
 1

WML

i

About the Tutorial

WML is an XML language used to specify content and user interface for WAP

devices like PDA and Mobile Phones. The WAP forum provides a DTD for WML.

This tutorial explains how to use WML to develop WAP applications.

Audience

This tutorial is designed for Software Professionals who are in the need of learning

the basics of WML.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

XML, text editor, execution of programs, etc.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute, or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness, or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

WML

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Table of Contents .. ii

1. WML - OVERVIEW .. 1

WML Versions ... 1

WML Decks and Cards ... 1

WML Program Structure .. 2

WAP Site Design Considerations .. 3

2. WML - ENVIRONMENT ... 4

Configuring Web Server ... 4

Configure Apache Web Server for WAP ... 4

Configure Microsoft IIS for WAP .. 5

Installing WAP Gateway Simulator .. 5

Installing WAP Phone Simulator .. 6

The WAP Model... 6

How WAP Model Works? .. 7

3. WML - SYNTAX ... 8

WML Document Prolog ... 8

WML Document Body .. 9

Testing Your Program .. 9

4. WML - ELEMENTS .. 11

Deck & Card Elements ... 11

Text Elements .. 11

WML

iii

Text Formatting Tags ... 12

Image Elements ... 12

Anchor Elements ... 12

Event Elements .. 12

Task Elements .. 13

Input Elements .. 13

Variable Elements.. 13

5. WML - COMMENTS .. 14

6. WML - VARIABLES .. 15

The <setvar> element .. 15

The input elements .. 15

Using Variables .. 16

7. WML – FORMATTING ... 17

Line Break .. 17

Text Paragraphs ... 18

WML Tables ... 19

Preformatted Text ... 22

8. WML – FONTS .. 24

9. WML – IMAGES .. 26

How to make ".wbmp" Images .. 27

10. WML – TABLES ... 29

11. WML – LINKS.. 31

WML <anchor> Element .. 31

WML <a> Element ... 32

WML

iv

12. WML – TASKS ... 35

The <go> Task .. 35

The <prev> Task ... 38

The <refresh> Task .. 40

The <noop> Task.. 41

13. WML - INPUTS ... 42

WML <select> Element .. 42

WML <input> Element ... 45

WML <fieldset> Element ... 47

WML <optgroup> Element... 48

14. WML – SUBMIT DATA TO SERVER .. 51

15. WML – SERVER SIDE SCRIPTS ... 53

WML and PHP .. 54

16. WML – EVENTS .. 55

WML - onenterbackward Event ... 55

WML - onenterforward Event .. 58

WML - onpick Attribute ... 60

WML - ontimer Event .. 62

WML <onevent> Element .. 64

17. WML - TIMER ... 67

WML <timer> Element ... 67

18. WML – TEMPLATE .. 70

19. THE WML 1.2 – DTD ... 74

WML

v

20. WML 2.0 .. 85

Basic Goals of WML2 ... 85

WML2 Vision ... 86

The WML2 Language Structure .. 86

WML Document Structure Modules .. 87

WML2 Tasks .. 88

WML2 Events .. 88

WML2 Document Type .. 88

Style Sheets with WML2 .. 89

External style sheet ... 89

Internal Style Sheets .. 89

Inline Style ... 90

The WML2 Default Style Sheet .. 90

The WML2 Elements .. 91

21. WML – ENTITIES... 92

22. WML – TAGS REFERENCE ... 93

Deck & Card Elements ... 93

WML <!--...--> Tag .. 93

WML <wml> Tag .. 94

WML <head> Tag ... 95

WML <meta> Tag .. 96

WML <card> Tag .. 98

WML<access>Tag .. 99

WML <template> Tag .. 100

Text Elements .. 104

WML
 Tag ... 104

WML

vi

WML <p> Tag ... 106

WML <table> Tag ... 107

WML <td> Tag ... 109

WML <tr> Tag .. 111

WML <pre> Tag ... 113

Text Formatting Tags ... 114

WML Tag ... 115

WML <big> Tag .. 116

WML Tag .. 118

WML <i> Tag .. 119

WML <small> Tag .. 120

WML Tag ... 122

WML <u> Tag ... 124

Image Elements ... 125

WML Tag ... 125

Anchor Elements ... 127

WML <a>Tag .. 127

WML <anchor> Tag ... 129

Event Elements .. 131

WML <do> Tag ... 131

WML <onevent> Tag .. 135

WML <postfield> Tag ... 137

WML <ontimer> Tag .. 138

WML <onenterforward> Tag ... 140

WML <onenterbackward> Tag ... 142

WML <onpick> Tag .. 145

Task Elements .. 147

WML

vii

WML <go> Tag ... 148

WML <noop> Tag... 151

WML <prev> Tag .. 152

WML <refresh> Tag ... 153

Input Elements .. 154

WML <input> Tag .. 155

WML <select> Tag ... 157

WML <option> Tag .. 160

WML <fieldset> Tag ... 162

WML <optgroup> Tag .. 164

Variable Elements.. 165

WML <setvar> Tag ... 166

WML <timer> Tag .. 167

23. WML – WAP EMULATORS .. 170

24. WML – VALIDATOR .. 171

Validate WML Content .. 171

Validate WML File ... 171

 1

The topmost layer in the WAP (Wireless Application Protocol) architecture is made

up of WAE (Wireless Application Environment), which consists of WML and WML

scripting language.

 WML stands for Wireless Markup Language

 WML is an application of XML, which is defined in a document-type

definition.

 WML is based on HDML and is modified so that it can be compared with

HTML.

 WML takes care of the small screen and the low bandwidth of transmission.

 WML is the markup language defined in the WAP specification.

 WAP sites are written in WML, while web sites are written in HTML.

 WML is very similar to HTML. Both of them use tags and are written in plain

text format.

 WML files have the extension ".wml". The MIME type of WML is

"text/vnd.wap.wml".

 WML supports client-side scripting. The scripting language supported is

called WML Script.

WML Versions

WAP Forum has released a latest version WAP 2.0. The markup language defined

in WAP 2.0 is XHTML Mobile Profile (MP). The WML MP is a subset of the XHTML.

A style sheet called WCSS (WAP CSS) has been introduced along with XHTML MP.

The WCSS is a subset of the CSS2.

Most of the new mobile phone models released are WAP 2.0-enabled. Because

WAP 2.0 is backward compatible to WAP 1.x, WAP 2.0-enabled mobile devices can

display both XHTML MP and WML documents.

WML 1.x is an old technology. However, that does not mean it is of no use, since

a lot of wireless devices that support only WML 1.x are still being used. The latest

version of WML is 2.0 and it is backward compatible. So, WAP site developers need

not worry about WML 2.0.

WML Decks and Cards

The main difference between HTML and WML is that the basic unit of navigation

in HTML is a page, while that in WML is a card. A WML file can contain multiple

cards and they form a deck.

When a WML page is accessed from a mobile phone, all the cards in the page are

downloaded from the WAP server. So, if the user goes to another card of the same

deck, the mobile browser does not have to send any requests to the server since

the file that contains the deck is already stored in the wireless device.

1. WML - OVERVIEW

WML

2

You can put links, text, images, input fields, option boxes, and many other

elements in a card.

WML Program Structure

Following is the basic structure of a WML program:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="one" title="First Card">

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

Ths is the second card in the deck

</p>

</card>

</wml>

The first line of this text says that this is an XML document and the version is 1.0.

The second line selects the document type and gives the URL of the document

type definition (DTD).

One WML deck (i.e. page) can have one or more cards as shown above. We will

see complete details on WML document structure in subsequent chapter.

Unlike HTML 4.01 Transitional, text cannot be enclosed directly in the

<card>...</card> tag pair. So, you need to put a content inside <p>...</p> as

shown above.

WML

3

WAP Site Design Considerations

Wireless devices are limited by the size of their displays and keypads. It's

therefore very important to take this into account when designing a WAP Site.

While designing a WAP site, you must ensure that you keep things simple and

easy to use. You should always keep in mind that there are no standard micro

browser behaviors and that the data link may be relatively slow, at around 10Kbps.

However, with GPRS, EDGE, and UMTS, this may not be the case for long,

depending on where you are located.

The following are general design tips that you should keep in mind when designing

a service:

 Keep the WML decks and images to less than 1.5KB.

 Keep the text brief and meaningful, and as far as possible try to pre-code

options to minimize the rather painful experience of user data entry.

 Keep the URLs brief and easy to recall.

 Minimize menu levels to prevent users from getting lost and the system

from slowing down.

 Use standard layout tags such as <big> and , and logically structure

your information.

 Don't go overboard with the use of graphics, as many target devices may

not support them.

WML

4

To develop WAP applications, you will need the following:

 A WAP enabled Web Server: You can enable your Apache or Microsoft

IIS to serve all the WAP client request.

 A WAP Gateway Simulator: This is required to interact to your WAP

server.

 A WAP Phone Simulator: This is required to test your WAP Pages and to

show all the WAP pages.

You can write your WAP pages using the following languages:

 Wireless Markup Language (WML) to develop WAP application.

 WML Script to enhance the functionality of WAP application.

Configuring Web Server

In normal web applications, MIME type is set to text/html, designating normal

HTML code. Images, on the other hand, could be specified as image/gif or

image/jpeg. With this content type specification, the web browser knows the data

type that the web server returns.

To make your Apache WAP compatible, you don’t have to put a lot of effort. All

that you need to do is to add support for the MIME types and extensions listed

below.

File Extension MIME type

WML (.wml) text/vnd.wap.wml

WMLScript (.wmls) text/vmd.wap.wmlscript

WMLScriptc (.wmlsx) application/vnd.wap.wmlscriptc

WMLC (.wmlc) application/vnd.wap.wmlc

WBMP (.wbmp) image/vnd.wap.wbmp

Configure Apache Web Server for WAP

Let us assume you have Apache Web server installed on your machine. Now we

will explain let you know tell you how to enable WAP functionality in your Apache

web server.

2. WML - ENVIRONMENT

WML

5

Locate Apache's file httpd.conf which is usually in /etc/httpd/conf, and add the

following lines to the file and restart the server:

AddType text/vnd.wap.wml .wml

AddType text/vnd.wap.wmlscript .wmls

AddType application/vnd.wap.wmlc .wmlc

AddType application/vnd.wap.wmlscriptc .wmlsc

AddType image/vnd.wap.wbmp .wbmp

In dynamic applications, the MIME type must be set on the fly, whereas in static

WAP applications, the web server must be configured appropriately.

Configure Microsoft IIS for WAP

To configure a Microsoft IIS server to deliver WAP content, you need to perform

the following exercise:

 Open the Internet Service Manager console and expand the tree to view

your Website entry. You can add the WAP MIME types to the whole server

or to the individual directories.

 Open the Properties dialog box by right-clicking the appropriate server or

directory, then choose Properties from the menu.

 From the Properties dialog, choose the HTTP Headers tab, then select the

File Types button at the bottom right.

 For each MIME type listed in the above table, supply the extension with or

without the dot (it will be automatically added for you), then click OK in the

Properties dialog box to accept your changes.

Installing WAP Gateway Simulator

There are many WAP Gateway Simulator available on the Internet, so download

any of them and install on your PC. You would need to run this gateway before

starting WAP Mobile simulator.

WAP Gateway will take your request and passes it to the Web Server and whatever

response will be received from the Web server that will be passed to the Mobile

Simulator.

You can download it from Nokia website:

 Nokia WAP Gateway simulator - Download Nokia WAP Gateway

simulator.

WML

6

Installing WAP Phone Simulator

There are many WAP Simulators available on the Internet, so download any of

them and install on your PC, which you will use as a WAP client. Here are popular

links to download simulator:

 Nokia WAP simulator - Download Nokia WAP simulator.

 WinWAP simulator - Download WinWAP browser from their official

website.

NOTE: If you have WAP enabled phone, then you do not need to install this

simulator. But while doing development, it is more convenient and economic to

use a simulator.

The WAP Model

The following figure shows the WAP programming model. Note the similarities with

the Internet model. Without the WAP Gateway/Proxy, the two models would have

been practically identical.

WML

7

WAP Gateway/Proxy is the entity that connects the wireless domain with the

Internet. You should make a note that the request, which is sent from the wireless

client to the WAP Gateway/Proxy uses the Wireless Session Protocol (WSP). In its

essence, WSP is a binary version of HTTP.

A markup language - the Wireless Markup Language (WML) has been adapted

to develop optimized WAP applications. In order to save valuable bandwidth in the

wireless network, WML can be encoded into a compact binary format. Encoding

WML is one of the tasks performed by the WAP Gateway/Proxy.

How WAP Model Works?

When it comes to actual use, WAP works like this:

 The user selects an option on their mobile device, which has a URL with

Wireless Markup language (WML) content assigned to it.

 The phone sends the URL request via the phone network to a WAP gateway,

using the binary encoded WAP protocol.

 The gateway translates this WAP request into a conventional HTTP request

for the specified URL, and sends it on to the Internet.

 The appropriate Web server picks up the HTTP request.

 The server processes the request, just as it would any other request. If the

URL refers to a static WML file, the server delivers it. If a CGI script is

requested, it is processed and the content returned as usual.

 The Web server adds the HTTP header to the WML content and returns it to

the gateway.

 The WAP gateway compiles the WML into binary form.

 The gateway then sends the WML response back to the phone.

 The phone receives the WML via the WAP protocol.

 The micro-browser processes the WML and displays the content on the

screen.

WML

8

A WML program is typically divided into two parts: the document prolog and the

body. Consider the following code:

Following is the basic structure of a WML program:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="one" title="First Card">

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

Ths is the second card in the deck

</p>

</card>

</wml>

WML Document Prolog

The first line of this text says that this is an XML document and the version is 1.0.

The second line selects the document type and gives the URL of the document

type definition (DTD). The DTD referenced is defined in WAP 1.2, but this header

changes with the versions of the WML. The header must be copied exactly so that

the tool kits automatically generate this prolog.

3. WML - SYNTAX

WML

9

The prolog components are not WML elements and they should not be closed, i.e.

you should not give them an end tag or finish them with />.

WML Document Body

The body is enclosed within a <wml> </wml> tag pair. The body of a WML

document can consist of one or more of the following:

 Deck

 Card

 Content to be shown

 Navigation instructions

Unlike HTML 4.01 Transitional, text cannot be enclosed directly in the

<card>...</card> tag pair. So you need to put a content inside <p>...</p> as

shown above.

Testing Your Program

Put the above code in a file called test.wml file, and put this WML file locally on

your hard disk, then view it using an emulator.

This is by far the most efficient way of developing and testing WML files. Since

your aim is, however, to develop a service that is going to be available to WAP

phone users, you should upload your WML files onto a server once you have

developed them locally and test them over a real Internet connection. As you start

developing more complex WAP services, this is how you will identify and rectify

performance problems, which could, if left alone, lose your site visitors.

In uploading the file test.wml to a server, you will be testing your WML emulator

to see how it looks and behaves, and checking your Web server to see that it is

set up correctly. Now start your emulator and use it to access the URL of test.wml.

For example, the URL might look something like this:

http://websitename.com/wapstuff/test.wml

NOTE: Before accessing any URL, make sure WAP Gateway Simulator is running

on your PC.

When you will download your WAP program, then you will see only first card at

your mobile. Following is the output of the above example on Nokia Mobile Browser

4.0. This mobile supports horizontal scrolling. You can see the text off the screen

by pressing the "Left" or "Right" button.

WML

10

When you press right button, then second card will be visible as follows:

WML

11

WML is defined by a set of elements that specify all markup and structural

information for a WML deck. Elements are identified by tags, which are each

enclosed in a pair of angle brackets.

Unlike HTML, WML strictly adheres to the XML hierarchical structure, and thus,

elements must contain a start tag; any content such as text and/or other

elements; and an end tag. Elements have one of the following two structures:

 <tag> content </tag> : This form is identical to HTML.

 <tag />: This is used when an element cannot contain visible content or is

empty, such as a line break. WML document's prolog part does not have

any element, which has closing element.

Following table lists the majority of valid elements. A complete detail of all these

elements is given in WML Tags Reference.

Deck & Card Elements

WML Elements Purpose

<!--> Defines a WML comment

<wml> Defines a WML deck (WML root)

<head> Defines head information

<meta> Defines meta information

<card> Defines a card in a deck

<access> Defines information about the access control of a deck

<template> Defines a code template for all the cards in a deck

Text Elements

WML Elements Purpose

 Defines a line break

<p> Defines a paragraph

<table> Defines a table

<td> Defines a table cell (table data)

4. WML - ELEMENTS

WML

12

<tr> Defines a table row

<pre> Defines preformatted text

Text Formatting Tags

WML Elements Purpose

 Defines bold text

<big> Defines big text

 Defines emphasized text

<i> Defines italic text

<small> Defines small text

 Defines strong text

<u> Defines underlined text

Image Elements

WML Elements Purpose

 Defines an image

Anchor Elements

WML Elements Purpose

<a> Defines an anchor

<anchor> Defines an anchor

Event Elements

WML Elements Purpose

<do> Defines a do event handler

<onevent> Defines an onevent event handler

<postfield> Defines a postfield event handler

<ontimer> Defines an ontimer event handler

<onenterforward> Defines an onenterforward handler

WML

13

<onenterbackward> Defines an onenterbackward handler

<onpick> Defines an onpick event handler

Task Elements

WML Elements Purpose

<go> Represents the action of switching to a new card

<noop> Says that nothing should be done

<prev>
Represents the action of going back to the previous

card

<refresh> Refreshes some specified card variables.

Input Elements

WML Elements Purpose

<input> Defines an input field

<select> Defines a select group

<option> Defines an option in a selectable list

<fieldset> Defines a set of input fields

<optgroup> Defines an option group in a selectable list

Variable Elements

WML Elements Purpose

<setvar> Defines and sets a variable

<timer> Defines a timer

WML

14

As with most programming languages, WML also provides a means of placing

comment text within the code.

Comments are used by developers as a means of documenting programming

decisions within the code to allow for easier code maintenance.

WML comments use the same format as HTML comments and use the following

syntax:

<!-- This will be assumed as a comment -->

A multiline comment can be given as follows:

<!-- This is a multi-line

 comment -->

The WML author can use comments anywhere, and they are not displayed to the

user by the user agent. Some emulators may complain if comments are placed

before the XML prolog.

Note that comments are not compiled or sent to the user agent, and thus have no

effect on the size of the compiled deck.

5. WML - COMMENTS

WML

15

Because multiple cards can be contained within one deck, some mechanism needs

to be in place to hold data as the user traverses from card to card. This mechanism

is provided via WML variables.

WML is case sensitive. No case folding is performed when parsing a WML deck. All

enumerated attribute values are case sensitive. For example, the following

attribute values are all different: id="Card1", id="card1", and id="CARD1".

Variables can be created and set using several different methods. Following are

the two examples:

The <setvar> element

The <setvar> element is used as a result of the user executing some task. The

>setvar> element can be used to set a variable's state within the following

elements: <go>, <prev>, and <refresh>.

This element supports the following attributes:

Attribute Value Description

name string Sets the name of the variable

value string Sets the value of the variable

class class data Sets the class name for the element.

id element ID A unique ID for the element.

The following element would create a variable named ‘a’ with a value of 1000:

<setvar name="a" value="1000"/>

The input elements

Variables are also set through any input element like input, select, option, etc. A

variable is automatically created that corresponds with the named attribute of an

input element.

For example, the following element would create a variable named b:

<select name="b">

<option value="value1">Option 1</option>

6. WML - VARIABLES

WML

16

<option value="value2">Option 2</option>

</select>

Using Variables

Variable expansion occurs at runtime, in the micro browser or emulator. This

means, it can be concatenated with or embedded in other text.

Variables are referenced with a preceding dollar sign, and any single dollar sign in

your WML deck is interpreted as a variable reference.

<p> Selected o

WML

17

This section describes basic text formatting elements of WML.

Line Break

The
 element defines a line break and almost all WAP browsers support a

line break tag.

The
 element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of
 element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Line Break Example">

<p align="center">

This is a
 paragraph with a line break.

</p>

</card>

</wml>

7. WML – FORMATTING

WML

18

It will produce the following result:

Text Paragraphs

The <p> element defines a paragraph of text and WAP browsers always render a

paragraph in a new line.

A <p> element is required to define any text, image, or a table in WML.

The <p> element supports the following attributes:

Attribute Value Description

align

left

right

center

This is used to change the horizontal alignment of

a paragraph.

mode
wrap

no wrap

Sets whether a paragraph should wrap lines or

not.

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <p> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

19

<wml>

<card title="Paragraph Example">

<p align="center">

This is first paragraph

</p>

<p align="right">

This is second paragraph

</p>

</card>

</wml>

It will produce the following result:

WML Tables

The <table> element along with <tr> and <td> is used to create a table in WML.

WML does not allow the nesting of tables.

A <table> element should be put with-in <p>...</p> elements.

The <table /> element supports the following attributes:

WML

20

Attribute Value Description

columns number Sets the number of columns in the table

align

L

C

R

To specify the horizontal text alignment of the

columns, you need to assign three letters to the

align attribute. Each letter represents the

horizontal text alignment of a column. The letter

can be L, C, or R. For example, if you want the

following settings to be applied to your table:

First table column -- Left-aligned

Second table column -- Center-aligned

Third table column -- Right-aligned

Then you should set the value of

the align attribute to LCR.

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <table> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Tables">

<p>

<table columns="3" align="LCR">

 <tr>

 <td>Col 1</td>

 <td>Col 2</td>

 <td>Col 3</td>

WML

21

 </tr>

 <tr>

 <td>A</td>

 <td>B</td>

 <td>C</td>

 </tr>

 <tr>

 <td>D</td>

 <td>E</td>

 <td>F</td>

 </tr>

</table>

</p>

</card>

</wml>

It will produce the following result:

WML

22

Preformatted Text

The <pre> element is used to specify preformatted text in WML. Preformatted

text is text of which the format follows the way it is typed in the WML document.

This tag preserves all the white spaces enclosed inside this tag. Make sure you are

not putting this tag inside <p>...</p>

The <pre> element supports following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <pre> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Preformatted Text">

 <pre>

 This is preformatted

 text and will appear

 as it it.

</pre>

</card>

</wml>

WML

23

It will produce the following result:

WML

24

WML does not support element, but there are other WML elements, which

you can use to create different font effects like underlined text, bold text, and

italic text, etc.

These tags are given in the following table:

WML Elements Purpose

 Defines bold text

<big> Defines big text

 Defines emphasized text

<i> Defines italic text

<small> Defines small text

 Defines strong text

<u> Defines underlined text

These elements support the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of these elements.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

8. WML – FONTS

WML

25

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

</wml>

It will produce the following result:

WML

26

The element is used to include an image in a WAP card. WAP-enabled

wireless devices only supported the Wireless Bitmap (WBMP) image format.

WBMP images can only contain two colors: black and white. The file extension of

WBMP is ".wbmp" and the MIME type of WBMP is "image/vnd.wap.wbmp".

The element supports the following attributes:

Attribute Value Description

align

top

middle

bottom

Alignment of the image.

alt
alternative

text

Sets an alternate text to be displayed if the image

is not displayed.

height
px

%

Height of the image in pixels or percentage. If you

specify the value in pixels, the syntax is "140",

instead of "140px".

hspace
px

%

Sets white space to the left and right of the

image. If you specify the value in pixels, the

syntax is "140", instead of "140px".

localsrc cdata

Sets an alternate representation for the image. If

this attribute is set, the browser will use it instead

of the "src" attribute.

src image url A path to wbmp image.

vspace
px

%

Sets white space above and below the image. If

you specify the value in pixels, the syntax is

"140", instead of "140px".

width
px

%

Sets the width of the image. If you specify the

value in pixels, the syntax is "140", instead of

"140px".

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

9. WML – IMAGES

WML

27

How to make ".wbmp" Images

There are free tools available on the Internet to make ".wbmp" images.

The Nokia Mobile Internet Toolkit (NMIT) comes with a WBMP image editor that

you can use. You can convert existing GIF or JPG image files into WBMP file using

NMIT.

Another free tool is ImageMagick, which can help you to create WBMP images.

The following example shows the usage of element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Images">

<p>

This is Thumb image

</p>

<p>

This is Heart image

</p>

</card>

</wml>

WML

28

It will produce the following result:

WML

29

The <table> element along with <tr> and <td> is used to create a table in WML.

WML does not allow the nesting of tables

A <table> element should be put with-in <p>...</p> elements.

The <table /> element supports the following attributes:

Attribute Value Description

columns number Sets the number of columns in the table

align

L

C

R

To specify the horizontal text alignment of the

columns, you need to assign three letters to the

align attribute. Each letter represents the

horizontal text alignment of a column. The letter

can be L, C, or R. For example, if you want the

following settings to be applied to your table:

First table column -- Left-aligned

Second table column -- Center-aligned

Third table column -- Right-aligned

Then you should set the value of

the align attribute to LCR.

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <table> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Tables">

<p>

10. WML – TABLES

WML

30

<table columns="3" align="LCR">

 <tr>

 <td>Col 1</td>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <td>A</td>

 <td>B</td>

 <td>C</td>

 </tr>

 <tr>

 <td>D</td>

 <td>E</td>

 <td>F</td>

 </tr>

</table>

</p>

</card>

</wml>

It will produce the following result:

WML

31

WML provides you an option to link various cards using links and then navigate

through different cards.

There are two WML elements, <anchor> and <a>, which can be used to create

WML links.

WML <anchor> Element

The <anchor>...</anchor> tag pair is used to create an anchor link. It is used

together with other WML elements called <go/>, <refresh> or <prev/>. These

elements are called task elements and tell WAP browsers what to do when a user

selects the anchor link.

You can enclose Text or image along with a task tag inside <anchor>...</anchor>

tag pair.

The <anchor> element supports the following attributes:

Attribute Value Description

title cdata Defines a text identifying the link

xml:lang language_code Sets the language used in the element

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <anchor> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Anchor Element">

<p>

 <anchor>

 <go href="nextpage.wml"/>

11. WML – LINKS

WML

32

 </anchor>

</p>

<p>

 <anchor>

 <prev/>

 </anchor>

</p>

</card>

</wml>

It will produce the following result:

WML <a> Element

The <a>... tag pair can also be used to create an anchor link and always a

preferred way of creating links.

You can enclose Text or image inside <a>... tags.

The <a> element supports the following attributes:

WML

33

Attribute Value Description

href URL Defines URL of the liked page.

title cdata Defines a text identifying the link.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <a> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="A Element">

<p> Link to Next Page:

 Next Page

</p>

</card>

</wml>

WML

34

It will produce the following result:

WML

35

A WML task is an element that specifies an action to be performed by the browser,

rather than something to be displayed. For example, the action of changing to a

new card is represented by a <go> task element, and the action of returning to

the previous card visited is represented by a <prev> task element. Task elements

encapsulate all the information required to perform the action.

WML provides the following four elements to handle four WML tasks called as:

 The <go> task

 The <pre> task

 The <refresh> task

 The <noop> taks

The <go> Task

As the name suggests, the <go> task represents the action of going to a new

card.

The <go> element supports the following attributes:

Attribute Value Description

href URL
Gives the URL of the new card. Relative URLs are

resolved relative to the current card.

method
get

post

Specifies the method that should be used to fetch

the deck. This must be one of the values get or

post, corresponding to the GET and POST methods

of HTTP.

When using method="get", the data is sent as a

request with? Data appended to the url. The

method has a disadvantage that it can be used only

for a limited amount of data, and if you send

sensitive information, it will be displayed on the

screen and saved in the web server's logs. So, do

not use this method if you are sending password

etc.

With method="post", the data is sent as a request

with the data sent in the body of the request. This

method has no limit, and sensitive information is

not visible in the URL

12. WML – TASKS

WML

36

sendreferer
true

false

If set to true, the browser sends the URL of the

current deck along with the request. This URL is

sent as a relative URL if possible. The purpose of

this, is to allow servers to perform simple access

control on decks, based on which decks are linking

to them. For example, using HTTP, this attribute is

sent in the HTTP Referer header.

accept-

charset
charset_list

Specifies a comma- or space-separated list of

character sets that can encode data sent to the

server in a POST request. The default value is

"unknown".

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <go> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Chapter 2 : <go href="chapter2.wml"/>

 </anchor>

</p>

</card>

</wml>

Another example showing how to upload data using Get Method:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

37

<wml>

<card title="GO Element">

<p>

 <anchor>

 Using Get Method

 <go href="chapter2.wml?x=17&y=42" method="get"/>

 </anchor>

</p>

</card>

</wml>

Another example showing how to upload data using <setvar> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Using setvar:

 <go href="chapter2.wml">

 <setvar name="x" value="17"/>

 <setvar name="y" value="42"/>

 </go>

 </anchor>

</p>

</card>

</wml>

WML

38

Another example showing how to upload data using <postfiled> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Using setvar:

 <go href="chapter2.wml" method="get">

 <postfield name="x" value="17"/>

 <postfield name="y" value="42"/>

 </go>

 </anchor>

</p>

</card>

</wml>

The <prev> Task

The <prev> task represents the action of returning to the previously visited card

on the history stack. When this action is performed, the top entry is removed from

the history stack, and that card is displayed again, after any <setvar> variable

assignments in the <prev> task have taken effect.

If no previous URL exists, specifying <prev> has no effect.

The <prev> element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

WML

39

The following example shows the usage of <prev> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Prev Element">

<p>

 <anchor>

 Previous Page :<prev/>

 </anchor>

</p>

</card>

</wml>

One situation where it can be useful to include variables in a <prev> task is a

login page, which prompts for a username and password. In some situations, you

may want to clear out the password field when returning to the login card, forcing

the user to reenter it. This can be done with a construct such as:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Prev Element">

<p>

 <anchor>

 <prev>

 <setvar name="password" value=""/>

 </prev>

 </anchor>

</p>

WML

40

</card>

</wml>

The <refresh> Task

The <refresh> task is the simplest task that actually does something. Its effect is

simply to perform the variable assignments specified by its <setvar> elements,

then redisplay the current card with the new values. The <go> and <prev> tasks

perform the same action just before displaying the new card.

The <refresh> task is most often used to perform some sort of "reset" action on

the card.

The <refresh> element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <refresh> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Referesh Element">

<p>

 <anchor>

 Refresh this page:

 <go href="test.wml"/>

 <refresh>

 <setvar name="x" value="100"/>

 </refresh>

 </anchor>

</p>

WML

41

</card>

</wml>

The <noop> Task

The purpose of the <noop> task is to do nothing (no operation).

The only real use for this task is in connection with templates.

The <noop> element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <noop> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Noop Element">

<p>

 <do type="prev" label="Back">

 <noop/>

 </do>

</p>

</card>

</wml>

WML

42

WML provides various options to let a user enter information through WAP

application.

First of all, we are going to look at the different options for allowing the user to

make straight choices between items. These are usually in the form of menus and

submenus, allowing users to drill down to the exact data that they want.

WML <select> Element

The <select>...</select> WML elements are used to define a selection list and the

<option>...</option> tags are used to define an item in a selection list. Items are

presented as radio buttons in some WAP browsers. The <option>...</option> tag

pair should be enclosed within the <select>...</select> tags.

This element supports the following attributes:

Attribute Value Description

iname text
Names the variable that is set with the index

result of the selection.

ivalue text Sets the pre-selected option element.

multiple
true

false

Sets whether multiple items can be selected.

Default is "false."

name text
Names the variable that is set with the result of

the selection.

tabindex number Sets the tabbing position for the select element.

title text Sets a title for the list.

value text
Sets the default value of the variable in the

"name" attribute.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

13. WML - INPUTS

WML

43

The following example shows the usage of these two elements.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p> Select a Tutorial :

 <select>

 <option value="htm">HTML Tutorial</option>

 <option value="xml">XML Tutorial</option>

 <option value="wap">WAP Tutorial</option>

 </select>

</p>

</card>

</wml>

When you will load this program, it will show you the following screen:

WML

44

Once you highlight and enter the options, it will display the following screen:

You want to provide option to select multiple options, then set multiple attribute

to true as follows:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p> Select a Tutorial :

 <select multiple="true">

 <option value="htm">HTML Tutorial</option>

 <option value="xml">XML Tutorial</option>

 <option value="wap">WAP Tutorial</option>

 </select>

</p>

</card>

</wml>

WML

45

It will give you a screen to select multiple options as follows:

WML <input> Element

The <input/> element is used to create input fields and input fields are used to

obtain alphanumeric data from users.

This element supports the following attributes:

Attribute Value Description

name text
The name of the variable that is set with the

result of the user's input.

maxlength number
Sets the maximum number of characters the user

can enter in the field.

emptyok
true

false

Sets whether the user can leave the input field

blank or not. Default is "false."

format

A

a

N

X

x

M

m

*f

nf

Sets the data format for the input field. Default is

"*M."

A = uppercase alphabetic or punctuation

characters.

a = lowercase alphabetic or punctuation

characters.

N = numeric characters.

X = uppercase characters.

x = lowercase characters.

M = all characters.

WML

46

m = all characters.

*f = Any number of characters. Replace the f with

one of the letters above to specify what

characters the user can enter.

nf = Replace the n with a number from 1 to 9 to

specify the number of characters, the user can

enter. Replace the f with one of the letters above

to specify what characters, the user can enter.

size number Sets the width of the input field.

tabindex number Sets the tabbing position for the select element.

title text Sets a title for the list.

type
text

password

Indicates the type of the input field. The default

value is "text". Password field is used to take

password for authentication purpose.

value text
Sets the default value of the variable in the

"name" attribute.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Input Fields">

<p> Enter Following Information:

 Name: <input name="name" size="12"/>

 Age : <input name="age" size="12" format="*N"/>

 Sex : <input name="sex" size="12"/>

</p>

</card>

WML

47

</wml>

This will provide you the following screen to enter required information:

WML <fieldset> Element

The <fieldset/> element is used to group various input fields or selectable lists.

This element supports the following attributes:

Attribute Value Description

title text Sets a title for the list.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Grouped Fields">

WML

48

<p>

<fieldset title="Personal Info">

 Name: <input name="name" size="12"/>

 Age : <input name="age" size="12" format="*N"/>

 Sex : <input name="sex" size="12"/>

</fieldset>

</p>

</card>

</wml>

It will provide you the following screen to enter required information. This result

may differ browser to browser.

WML <optgroup> Element

The <optgroup/> element is used to group various options together inside a

selectable list.

This element supports the following attributes:

Attribute Value Description

title text Sets a title for the list.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

WML

49

id element ID A unique ID for the element.

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p>

 <select>

 <optgroup title="India">

 <option value="delhi">Delhi</option>

 <option value="mumbai">Mumbai</option>

 <option value="hyderabad">Hyderabad</option>

 </optgroup>

 <optgroup title="USA">

 <option value="ohio">Ohio</option>

 <option value="maryland">Maryland</option>

 <option value="washington">Washingtone</option>

 </optgroup>

 </select>

</p>

</card>

</wml>

WML

50

When a user loads above code, then it will give two options to be selected:

When a user selects any of the options, then only it will give final options to be

selected. So, if user selects India, then it will show you following options to be

selected:

WML

51

Many times, you will want your users to submit some data to your server. Similar

to HTML Form WML also provide a mechanism to submit user data to web server.

To submit data to the server in WML, you need the <go>...</go> along with

<postfield/> tags. The <postfield/> tag should be enclosed in the <go>...</go>

tag pair.

To submit data to a server, we collect all the set WML variables and use

<postfield> elements to send them to the server. The <go>...</go> elements

are used to set posting method to either POST or GET and to specify a server side

script to handle uploaded data.

In the previous chapters, we have explained various ways of taking inputs form

the users. These input elements sets WML variables to the entered values. We

also know how to take values from WML variables. So, now following example

shows how to submit three fields name, age, and sex to the server.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="card1" title="WML Form">

<p>

 Name: <input name="name" size="12"/>

 Sex : <select name="sex">

 <option value="male">Male</option>

 <option value="female">Female</option>

 </select>

 Age : <input name="age" size="12" format="*N"/>

 <anchor>

 <go method="get" href="process.php">

 <postfield name="name" value="$(name)"/>

 <postfield name="age" value="$(age)"/>

 <postfield name="sex" value="$(sex)"/>

14. WML – SUBMIT DATA TO SERVER

WML

52

 </go>

 Submit Data

 </anchor>

</p>

</card>

</wml>

When you download above code on your WAP device, it will provide you option to

enter three fields name, age, and sex and one link Submit Data. You will enter

three fields and then finally you will select Submit Data link to send entered data

to the server.

The method attribute of the <go> tag specifies, which HTTP method should be

used to send the form data.

If the HTTP POST method is used, the form data to be sent will be placed in the

message body of the request. If the HTTP GET method is used, the form data to

be sent will be appended to the URL. Since a URL can only contain a limited

number of characters, the GET method has the disadvantage that there is a size

limit for the data to be sent. If the user data contains non-ASCII characters, you

should make use of the POST method to avoid encoding problems.

There is one major difference between HTML and WML. In HTML, the name

attribute of the <input> and <select> tags is used to specify the name of the

parameter to be sent, while in WML the name attribute of the <postfield> tag is

used to do the same thing. In WML, the name attribute of <input> and <select>

is used to specify the name of the variable for storing the form data.

Next chapter will teach you how to handle uploaded data at the server end.

WML

53

If you already know how to write server side scripts for Web Application, then for

you, this is very simple to write Server Side program for WML applications. You

can use your favorite server-side technology to do the processing required by your

mobile Internet application.

At the server side, the parameter name will be used to retrieve the form data.

Consider the following example from the previous chapter to submit name, age,

and sex of a person:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="card1" title="WML Form">

<p>

 Name: <input name="name" size="12"/>

 Sex : <select name="sex">

 <option value="male">Male</option>

 <option value="female">Female</option>

 </select>

 Age : <input name="age" size="12" format="*N"/>

 <anchor>

 <go method="get" href="process.php">

 <postfield name="name" value="$(name)"/>

 <postfield name="age" value="$(age)"/>

 <postfield name="sex" value="$(sex)"/>

 </go>

 Submit Data

 </anchor>

</p>

</card>

15. WML – SERVER SIDE SCRIPTS

WML

54

</wml>

WML and PHP

Now, we can write a server side script to handle this submitted data in using either

PHP, PERL, ASP or JSP. I will show you a server side script written in PHP with

HTTP GET method.

Put the following PHP code in process.php file in the same directory where you

have your WML file.

<?php echo 'Content-type: text/vnd.wap.wml'; ?>

<?php echo '<?xml version="1.0"?'.'>'; ?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

 <card id="card1" title="WML Response">

 <p>

 Data received at the server:

 Name: <?php echo $_GET["name"]; ?>

 Age: <?php echo $_GET["age"]; ?>

 Sex: <?php echo $_GET["sex"]; ?>

 </p>

 </card>

</wml>

If you are using HTTP POST method, then you have to write PHP script accordingly

to handle received data. While sending output back to the browser, remember to

set the MIME type of the document to "text/vnd.wap.wml".

This way, you can write full-fledged Web Application where lots of database

transactions are involved.

You can use PERL CGI Concepts to write a dynamic WAP site.

WML

55

Event in ordinary language can be defined as something happened. In

programming, event is identical in meaning, but with one major difference. When

something happens in a computer system, the system itself has to (1) detect that

something has happened and (2) know what to do about it.

WML language also supports events and you can specify an action to be taken

whenever an event occurs. This action could be in terms of WMLScript or simply

in terms of WML.

WML supports following four event types:

 onenterbackward: This event occurs when the user hits a card by normal

backward navigational means. That is, user presses the Back key on a later

card and arrives back at this card in the history stack.

 onenterforward: This event occurs when the user hits a card by normal

forward navigational means.

 onpick: This is more like an attribute, but it is being used like an event.

This event occurs when an item of a selection list is selected or deselected.

 ontimer: This event is used to trigger an event after a given time period.

These event names are case sensitive and they must be in lowercase.

WML - onenterbackward Event

This event occurs when the user hits a card by normal backward navigational

means. That is, user presses the Back key on a later card and arrives back at this

card in the history stack.

Here is the syntax to define an event handler for onenterbackward event:

<onevent type="onenterbackward">

 A task to be performed.

</onevent>

Following is the example showing how onenterbackward event occurs whenever

you try to go back from the second card to the first card and defined event handler

takes you to card number three instead of card number 1. Copy and paste this

program and try to play with it to understand onenterbackward event type.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

16. WML – EVENTS

WML

56

<wml>

<card id="card1" title="Card 1">

<onevent type="onenterbackward">

 <go href="#card3"/>

</onevent>

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

</p>

</card>

<card id="card2" title="Card 2">

<p>

 <anchor>

 <prev/>

 Going backwards

 </anchor>

</p>

</card>

<card id="card3" title="Card 3">

<p>

Hello World!

</p>

</card>

</wml>

When you load this program, you will get the following screen:

WML

57

Now, press option Go to card 2 to go to the second card this will take you to the

following screen:

Now, you are on second page. Now, when you try to go back on card number,

onenterbackward event is executed and it takes you on card number 3 instead

of card number 2 and you see the following screen.

WML

58

WML - onenterforward Event

The onenterforward event is triggered when a user goes to a card in the forward

direction. For example, if you go to a card by entering the URL directly or by

following an anchor link of which the action is <go>, the onenterforward event

will be triggered and the WML code associated with the event will be executed.

The onenterforward event will be useful to you if you want to do something

before a card is displayed. For example, you need the onenterforward event if you

want to assign a value to a variable before a card is displayed.

Here is the syntax to define an event handler for onenterforward event:

<onevent type="onenterforward">

 A task to be performed.

</onevent>

Following is the example showing how onenterbackward event occurs whenever

you try to go on second card from the first card and defined event handler takes

you to card number three instead of card number 2. Copy and paste this program

and try to play with it to understand onenterforward event type.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="card1" title="Card 1">

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

</p>

</card>

<card id="card2" title="Card 2">

<onevent type="onenterforward">

 <go href="#card3"/>

WML

59

</onevent>

<p>

 This is card 2

</p>

</card>

<card id="card3" title="Card 3">

<p>

Hello World!

</p>

</card>

</wml>

When you load this program, you will get the following screen:

Now, press option Go to card 2 to go to the second card, because of

this, onenterforward event will occur and it will take on card number 3 instead

of card number 2 and you will see the following screen:

WML

60

WML - onpick Attribute

The onpick attribute is a great shortcut if you are using a select menu. Instead

of writing a lot of codes that allow the user to go to another card if an option is

selected, you can simply place the destination into the onpick attribute. Here is

a code fragment without the onpick attribute:

The following example shows the usage of onpick attribute along with <option>

element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="tutorials" title="Main Menu">

<p>

 Select a tutorial :

 <select title="tutorials" name="selection_list">

 <option onpick="#xhtml">XHTML Tutorial</option>

 <option onpick="#wap">WAP Tutorial</option>

 </select>

</p>

</card>

<card id="xhtml" title="XHTML Tutorial">

<p>

WML

61

Go through our XHTML tutorial

</p>

</card>

<card id="wap" title="WAP Tutorial">

<p>

Go through our WAP tutorial

</p>

</card>

</wml>

When you load this program, it will display the following screen:

Now, highlight the dropdown box and select it. It will give you two options as

follows:

When you load this program, it will display the following screen:

WML

62

Now, assume, you select WAP Tutorial from the list, then it will display the

following screen:

WML - ontimer Event

The ontimer event is used to trigger an event after a given time period. Let's say

you want to display a message after 5 seconds of loading a card, then you can

use this event to do so.

WML

63

Here is the syntax to define an event handler for ontimer event:

<onevent type="ontimer">

 A task to be performed.

</onevent>

<timer value="50"/>

Here, it means that a task will be performed after 5 seconds.

The following example shows the usage of ontimer event along with <onevent>

element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="splash" title="splash">

 <onevent type="ontimer">

 <go href="#welcome"/>

 </onevent>

 <timer value="50"/>

<p>

 Enter

</p>

</card>

<card id="welcome" title="Welcome">

<p>

Welcome to the main screen.

</p>

</card>

</wml>

WML

64

When you load this program, it will display the following screen:

If you do not select the given Enter option, then after 5 seconds, you will be

directed to Welcome page and following screen will be displayed automatically.

WML <onevent> Element

The <onevent>...</onevent> tags are used to create event handlers. Its usage

takes the following form:

<onevent type="event_type">

WML

65

 A task to be performed.

</onevent>

You can use either go, prev, or refresh task inside <onevent>...</onevent> tags

against an event.

The <onevent> element supports the following attributes:

Attribute Value Description

type

onenterbackward

onenterforward

onpick

ontimer

Defines a type of event occurred.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

The following example shows the usage of <onevent> element. In this example,

whenever you try to go back from second card to first card,

then onenterbackward occurs, which moves you to card number three. Copy

and paste this program and try to play with it.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<onevent type="onenterbackward">

 <go href="#card3"/>

</onevent>

<card id="card1" title="Card 1">

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

WML

66

</p>

</card>

<card id="card2" title="Card 2">

<p>

 <anchor>

 <prev/>

 Going backwards

 </anchor>

</p>

</card>

<card id="card3" title="Card 3">

<p>

Hello World!

</p>

</card>

</wml>

WML

67

Previous chapter has described how events are triggered by the users and how do

we handle them using event handlers.

Sometime, you may want something to happen without the user explicitly having

to activate a control. Yes, WML provides you ontimer event to handle this.

The ontimer event is triggered when a card's timer counts down from one to zero,

which means that it doesn't occur if the timer is initialized to a timeout of zero.

You can bind a task to this event with the <onevent> element. Here is the syntax:

<onevent type="ontimer">

 A task to be performed.

</onevent>

Here, a task could be <go>, <prev> or <refresh>.

WML <timer> Element

A timer is declared inside a WML card with the <timer> element. It must follow

the <onevent> elements if they are present. (If there is no <onevent> elements,

the <timer> must be the first element inside the <card>.) No more than one

<timer> may be present in a card.

The <timer> element supports the following attributes:

Attribute Value Description

name text Sets a name for the element.

value number
Specifies the timer after which timer will be expired.

Timeouts are specified in units of a tenth of a second.

class class_data Sets a class name for the element.

id
element

ID
A unique ID for the element.

The following example shows the usage of <timer> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

17. WML - TIMER

WML

68

<wml>

<card id="splash" title="splash">

 <onevent type="ontimer">

 <go href="#welcome"/>

 </onevent>

 <timer value="50"/>

<p>

 Enter

</p>

</card>

<card id="welcome" title="Welcome">

<p>

Welcome to the main screen.

</p>

</card>

</wml>

When you load this program it shows you following screen:

WML

69

If you do not select given Enter option, then after 5 seconds, you will be directed

to Welcome page and following screen will be displayed automatically.

WML

70

The <template> is used to apply <do> and <onevent> elements to all cards in a

deck. This element defines a template for all the cards in a deck and the code in

the <template> tag is added to each card in the deck.

You can override a <do> element of a template by defining another <do> element

with the same name attribute value in a WML card.

The <template> element supports the following attributes:

Attribute Value Description

onenterbackward URL
Occurs when the user navigates into a card

using a "prev" task.

onenterforward URL
Occurs when the user navigates into a card

using a "go" task.

ontimer URL Occurs when the "timer" expires.

class class data Sets a class name for the element.

id
element

ID
A unique ID for the element.

The following example shows the usage of <go> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.3//EN"

"http://www.wapforum.org/DTD/wml13.dtd">

<wml>

 <template>

 <do name="main_menu" type="accept" label="Chapters">

 <go href="chapters"/>

 </do>

 <do name="menu_1" type="accept" label="Chapter 1">

 <go href="#chapter1"/>

 </do>

 <do name="menu_2" type="accept" label="Chapter 2">

18. WML – TEMPLATE

WML

71

 <go href="#chapter2"/>

 </do>

 <do name="menu_3" type="accept" label="Chapter 3">

 <go href="#chapter3"/>

 </do>

 <do name="menu_4" type="accept" label="Chapter 4">

 <go href="#chapter4"/>

 </do>

 </template>

 <card id="chapters" title="WML Tutorial">

 <p>

 Select One Chapter:

 <anchor>

 <go href="#chapter1"/>

 Chapter 1: WML Overview

 </anchor>

 <anchor>

 <go href="#chapter2"/>

 Chapter 2: WML Environment

 </anchor>

 <anchor>

 <go href="#chapter3"/>

 Chapter 3: WML Syntax

 </anchor>

 <anchor>

 <go href="#chapter4"/>

 Chapter 4: WML Elements

 </anchor>

 </p>

WML

72

 </card>

 <card id="chapter1" title="WML Tutorial Ch1">

 <p>

 Chapter 1: WML Introduction

 ...

 </p>

 </card>

 <card id="chapter2" title="WML Tutorial Ch2">

 <p>

 Chapter 2: WML Environment

 ...

 </p>

 </card>

 <card id="chapter3" title="WML Tutorial Ch3">

 <p>

 Chapter 3: WML Syntax

 ...

 </p>

 </card>

 <card id="chapter4" title="WML Tutorial Ch4">

 <p>

 Chapter 4: WML Elements

 ...

 </p>

 </card>

</wml>

WML

73

It will produce the following menu and now you can navigate through all the

chapters:

WML

74

Here is the complete DTD taken from W3.org. For a latest DTD, please check WML

Useful Resources section of this tutorial.

<!--

Wireless Markup Language (WML) Document Type Definition.

WML is an XML language. Typical usage:

 <?xml version="1.0"?>

 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

 "http://www.wapforum.org/DTD/wml12.dtd">

 <wml>

 ...

 </wml>

 Terms and conditions of use are available from the WAP Forum

 Ltd. web site at http://www.wapforum.org/docs/copyright.htm.

-->

<!ENTITY % length "CDATA">

 <!-- [0-9]+ for pixels or [0-9]+"%" for

 percentage length -->

<!ENTITY % vdata "CDATA">

 <!-- attribute value possibly containing

 variable references -->

<!ENTITY % HREF "%vdata;">

 <!-- URI, URL or URN designating a hypertext

 node. May contain variable references -->

<!ENTITY % boolean "(true|false)">

<!ENTITY % number "NMTOKEN">

 <!-- a number, with format [0-9]+ -->

<!ENTITY % coreattrs "id ID #IMPLIED

 class CDATA #IMPLIED">

<!ENTITY % ContentType "%vdata;">

19. THE WML 1.2 – DTD

WML

75

<!-- media type. May contain variable references -->

<!ENTITY % emph "em | strong |b |i |u |big |small">

<!ENTITY % layout "br">

<!ENTITY % text "#PCDATA | %emph;">

<!-- flow covers "card-level" elements,

 such as text and images -->

<!ENTITY % flow "%text; | %layout; | img | anchor |a |table">

<!-- Task types -->

<!ENTITY % task "go | prev | noop | refresh">

<!-- Navigation and event elements -->

<!ENTITY % navelmts "do | onevent">

<!--================ Decks and Cards ================-->

<!ELEMENT wml (head?, template?, card+)>

<!ATTLIST wml

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!-- card intrinsic events -->

<!ENTITY % cardev

 "onenterforward %HREF; #IMPLIED

 onenterbackward %HREF; #IMPLIED

 ontimer %HREF; #IMPLIED"

>

<!-- card field types -->

WML

76

<!ENTITY % fields "%flow; | input | select | fieldset">

<!ELEMENT card (onevent*, timer?, (do | p | pre)*)>

<!ATTLIST card

 title %vdata; #IMPLIED

 newcontext %boolean; "false"

 ordered %boolean; "true"

 xml:lang NMTOKEN #IMPLIED

 %cardev;

 %coreattrs;

>

<!--================ Event Bindings ================-->

<!ELEMENT do (%task;)>

<!ATTLIST do

 type CDATA #REQUIRED

 label %vdata; #IMPLIED

 name NMTOKEN #IMPLIED

 optional %boolean; "false"

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT onevent (%task;)>

<!ATTLIST onevent

 type CDATA #REQUIRED

 %coreattrs;

>

<!--================ Deck-level declarations ================-->

<!ELEMENT head (access | meta)+>

<!ATTLIST head

WML

77

 %coreattrs;

>

<!ELEMENT template (%navelmts;)*>

<!ATTLIST template

 %cardev;

 %coreattrs;

>

<!ELEMENT access EMPTY>

<!ATTLIST access

 domain CDATA #IMPLIED

 path CDATA #IMPLIED

 %coreattrs;

>

<!ELEMENT meta EMPTY>

<!ATTLIST meta

 http-equiv CDATA #IMPLIED

 name CDATA #IMPLIED

 forua %boolean; "false"

 content CDATA #REQUIRED

 scheme CDATA #IMPLIED

 %coreattrs;

>

<!--================ Tasks ================-->

<!ELEMENT go (postfield | setvar)*>

<!ATTLIST go

 href %HREF; #REQUIRED

 sendreferer %boolean; "false"

 method (post|get) "get"

WML

78

 enctype %ContentType; "application/x-www-form-urlencoded"

 accept-charset CDATA #IMPLIED

 %coreattrs;

>

<!ELEMENT prev (setvar)*>

<!ATTLIST prev

 %coreattrs;

>

<!ELEMENT refresh (setvar)*>

<!ATTLIST refresh

 %coreattrs;

>

<!ELEMENT noop EMPTY>

<!ATTLIST noop

 %coreattrs;

>

<!--================ postfield ================-->

<!ELEMENT postfield EMPTY>

<!ATTLIST postfield

 name %vdata; #REQUIRED

 value %vdata; #REQUIRED

 %coreattrs;

>

<!--================ variables ================-->

<!ELEMENT setvar EMPTY>

<!ATTLIST setvar

WML

79

 name %vdata; #REQUIRED

 value %vdata; #REQUIRED

 %coreattrs;

>

<!--================ Card Fields ================-->

<!ELEMENT select (optgroup|option)+>

<!ATTLIST select

 title %vdata; #IMPLIED

 name NMTOKEN #IMPLIED

 value %vdata; #IMPLIED

 iname NMTOKEN #IMPLIED

 ivalue %vdata; #IMPLIED

 multiple %boolean; "false"

 tabindex %number; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT optgroup (optgroup|option)+ >

<!ATTLIST optgroup

 title %vdata; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT option (#PCDATA | onevent)*>

<!ATTLIST option

 value %vdata; #IMPLIED

 title %vdata; #IMPLIED

 onpick %HREF; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

WML

80

 %coreattrs;

>

<!ELEMENT input EMPTY>

<!ATTLIST input

 name NMTOKEN #REQUIRED

 type (text|password) "text"

 value %vdata; #IMPLIED

 format CDATA #IMPLIED

 emptyok %boolean; "false"

 size %number; #IMPLIED

 maxlength %number; #IMPLIED

 tabindex %number; #IMPLIED

 title %vdata; #IMPLIED

 accesskey %vdata; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT fieldset (%fields; | do)* >

<!ATTLIST fieldset

 title %vdata; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT timer EMPTY>

<!ATTLIST timer

 name NMTOKEN #IMPLIED

 value %vdata; #REQUIRED

 %coreattrs;

>

WML

81

<!--================ Images ================-->

<!ENTITY % IAlign "(top|middle|bottom)" >

<!ELEMENT img EMPTY>

<!ATTLIST img

 alt %vdata; #REQUIRED

 src %HREF; #REQUIRED

 localsrc %vdata; #IMPLIED

 vspace %length; "0"

 hspace %length; "0"

 align %IAlign; "bottom"

 height %length; #IMPLIED

 width %length; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!--================ Anchor ================-->

<!ELEMENT anchor (#PCDATA | br | img | go | prev | refresh)*>

<!ATTLIST anchor

 title %vdata; #IMPLIED

 accesskey %vdata; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT a (#PCDATA | br | img)*>

<!ATTLIST a

 href %HREF; #REQUIRED

 title %vdata; #IMPLIED

 accesskey %vdata; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

WML

82

>

<!--================ Tables ================-->

<!ELEMENT table (tr)+>

<!ATTLIST table

 title %vdata; #IMPLIED

 align CDATA #IMPLIED

 columns %number; #REQUIRED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT tr (td)+>

<!ATTLIST tr

 %coreattrs;

>

<!ELEMENT td (%text; | %layout; | img | anchor |a)*>

<!ATTLIST td

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!--============ Text layout and line breaks =============-->

<!ELEMENT em (%flow;)*>

<!ATTLIST em

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT strong (%flow;)*>

<!ATTLIST strong

WML

83

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT b (%flow;)*>

<!ATTLIST b

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT i (%flow;)*>

<!ATTLIST i

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT u (%flow;)*>

<!ATTLIST u

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT big (%flow;)*>

<!ATTLIST big

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT small (%flow;)*>

<!ATTLIST small

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

WML

84

<!ENTITY % TAlign "(left|right|center)">

<!ENTITY % WrapMode "(wrap|nowrap)" >

<!ELEMENT p (%fields; | do)*>

<!ATTLIST p

 align %TAlign; "left"

 mode %WrapMode; #IMPLIED

 xml:lang NMTOKEN #IMPLIED

 %coreattrs;

>

<!ELEMENT br EMPTY>

<!ATTLIST br

 %coreattrs;

>

<!ELEMENT pre (#PCDATA | a | br | i | b | em | strong |

 input | select)*>

<!ATTLIST pre

 xml:space CDATA #FIXED "preserve"

 %coreattrs;

>

<!ENTITY quot """> <!-- quotation mark -->

<!ENTITY amp "&"> <!-- ampersand -->

<!ENTITY apos "'"> <!-- apostrophe -->

<!ENTITY lt "<"> <!-- less than -->

<!ENTITY gt ">"> <!-- greater than -->

<!ENTITY nbsp " "> <!-- non-breaking space -->

<!ENTITY shy ""> <!-- soft hyphen (discretionary hyphen) -->

WML

85

WML2 is a language, which extends the syntax and semantics of the followings:

 XHTML Basic [XHTMLBasic]

 CSS Mobile Profile [CSSMP]

 Unique semantics of WML1.0 [WML1.0]

WML2 is optimized for specifying presentation and user interaction on limited

capability devices such as mobile phones and other wireless mobile terminals.

This tutorial gives detail of the Wireless Markup Language (WML) Version 2. This

tutorial refers to version 2.0 of WML as WML2.

The XHTML Basic defined by the W3C is a proper subset of XHTML, which is a

reformulation of HTML in XML.

Basic Goals of WML2

There are five major goals for WML2:

 Backward compatibility: WML2 application should be running on old devices

as well.

 Convergence with existing and evolving Internet standards: XHTML Basic

[XHTMLBasic] and CSS Mobile Profile [CSSMP].

 Optimization of access from small, limited devices: WAP-enabled devices

are generally small and battery operated and they have relatively limited

memory and CPU power. So WML2 should be optimized enough to run on

these devices.

 Allowance for the creation of distinct user interfaces: WAP enables the

creation of Man Machine Interfaces (MMIs) with maximum flexibility and

ability for a vendor to enhance the user experience.

 Internationalization of the architecture: WAP targets common character

codes for international use. This includes international symbols and

pictogram sets for the end users, and local-use character encoding for the

content developers.

20. WML 2.0

WML

86

WML2 Vision

The WML2 vision is to create a language that extends the syntax and semantics

of XHTML Basic and CSS Mobile profile with the unique semantics of WML1. The

user should not be aware of how WML1 compatibility is achieved.

The WML2 Language Structure

WML2 is a new language with the following components:

(1) XHTML Basic

This element group is for the W3C convergence. For some of the elements, WML

extension attributes are added in order to achieve WML1 functionality.

(1a) XHTML Basic elements

a abbr acronym address base blockquote br caption cite code dd dfn div dl dt em

form h1 h2 h3 h4 h5 h6 head kbd label li link object ol param pre q samp span

strong table td th title tr ul var

(1b) XHTML Basic elements with WML extension attributes

body html img input meta option p select style textarea

(2) XHTML Modularization elements

This element group consists of select elements from those modules of XHTML not

included in XHTML Basic. Most of the elements are included for the WML1

compatibility. One element is included as an enhancement that fits limited handset

capabilities.

(2a) XHTML Modularization for backwards compatibility with WML1

b big i small (from Presentation Module) u (from Legacy Module) fieldset

optgroup (from Forms Module)

(2b) XHTML Modularization elements for feature enhancement

hr

(3) WML extensions elements

Some elements are brought from WML1, because the equivalent capabilities are

not provided in XHTML Basic or XHTML Modularization. One element is included

for enhancement of WML1 capabilities.

WML

87

(3a) WML extensions elements (for WML1 compatibility)

wml:access wml:anchor wml:card wml:do wml:getvar wml:go wml:noop

wml:onevent wml:postfield wml:prev wml:refresh wml:setvar wml:timer

(3b) WML extensions elements (for feature enhancement)

wml:widget

WML Document Structure Modules

The following elements in the Structure Module are used to specify the structure

of a WML2 document:

 body

 html

 wml:card

 head

 title

The body Element

The wml:newcontext attribute specifies whether the browser context is initialized

to a well-defined state when the document is loaded. If the wml:newcontext

attribute value is "true", the browser MUST reinitialize the browser context upon

navigation to this card.

The html Element

The xmlns:wml attribute refers to the WML namespace for example :

http://www.wapforum.org/2001/wml.

The wml:use-xml-fragments attribute is used to specify how a fragment identifier

is interpreted by the user agent.

The wml:card Element

The wml:card element specifies a fragment of the document body. Multiple

wml:card elements may appear in a single document. Each wml:card element

represents an individual presentation and/or interaction with the user.

If the wml:card element's newcontext attribute value is "true", the browser MUST

reinitialize the browser context upon navigation to this card.

The head Element

This element keeps header information of the document like meta element and

style sheet etc.

WML

88

The title Element

This element is used to put a document title.

NOTE: WML developers can use the XHTML document style, that is, body

structure, or they can use a collection of cards. When the body structure is used,

a document is constructed using a body element. The body element contains the

content of the document. When a collection of cards is used, a document is

constructed using one or more wml:card elements.

WML2 Tasks

The following tasks are defined in WML2.0. These tasks are very similar to WML1.0

 The go task

 The prev task

 The noop task

 The refresh task

WML2 Events

The following event types are defined in WML2:

 Intrinsic event: An event generated by the user agent and includes the

following events similar to WML1.0

o ontimer

o onenterforward

o onenterbackward

o onpick

 Extrinsic event: An event sent to the user agent by some external agent.

The WML 2 specification does not specify any classes of extrinsic events.

One example of a WML extrinsic event class may be WTA events.

WML2 Document Type

WML2 documents are identified by the MIME media type "application/wml+xml".

The type "application/xhtml+xml" can be used to identify documents from any of

the XHTML-based markup languages, including XHTML Basic.

The DOCTYPE declaration may include the XHTML Basic Formal Public Identifier

and may also include the URI of the XHTML Basic DTD as specified below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

WML

89

Style Sheets with WML2

Style sheets can be used to style WML2 documents. Style information can be

associated with a document in 3 ways:

External style sheet

An external style sheet can be associated with a document using a special XML

processing instruction or the link element. The use of the XML processing

instruction can also be used.

In the following example, the XML processing instruction is used to associate the

external style sheet "mobile.css".

<?xml-stylesheet href="mobile.css"

 media="handheld" type="text/css" ?>

In the following example, the link element is used to associate the external style

sheet "mystyle.css":

<html>

<head>

<link href="mystyle.css" type="text/css" rel="stylesheet"/>

...

</head>

...

</html>

Internal Style Sheets

Style information can be located within the document using the style element.

This element, like link, must be located in the document header.

The following shows an example of an internal style sheet:

<html>

<head>

<style type="text/css">

p { text-align: center; }

</style>

...

</head>

WML

90

...

</html>

Inline Style

You can specify style information for a single element using the style attribute.

This is called inline style.

In the following example, inline styling information is applied to a specific

paragraph element:

<p style="text-align: center">...</p>

The WML2 Default Style Sheet

Here is a sample style sheet for WML 2.0:

body, card, div, p, center, hr, h1, h2, h3, h4, h5, h6,

address, blockquote, pre, ol, ul, dl, dt, dd,

form, fieldset, object { display: block }

li { display: list-item }

head { display: none }

table { display: table }

tr { display: table-row }

td, th { display: table-cell }

caption { display: table-caption }

th { font-weight: bolder; text-align: center }

caption { text-align: center }

h1, h2, h3, h4, h5, h6, b, strong { font-weight: bolder }

i, cite, em, var,address { font-style: italic }

pre, code, kbd, pre { white-space: pre }

big { font-size: larger}

small { font-size: smaller}

hr { border: 1px inset }

ol { list-style-type: decimal }

u { text-decoration: underline }

WML

91

The WML2 Elements

Here is the link to a complete list of all the WML2 elements: WML2 Tags Reference

Most of the elements are available in XHTML specification except a few elements

starting with WML: These elements are specific to WML.

All the elements have the same meaning here as in XHTML specification.

http://www.tutorialspoint.com/wml/wml2_tags_reference.htm

WML

92

WML entities represent symbols that either can't easily be typed in or that have a

special meaning in WML.

For example, if you put a < character into your text normally, the browser thinks

it's the start of a tag; the browser then complains when it can't find the matching

> character to end the tag.

The following table displays the three forms of entities in WML. Named entities are

something you may be familiar with from HTML: they look like & or <, and

they represent a single named character via a mnemonic name. Entities can also

be entered in one of two numeric forms (decimal or hexadecimal), allowing you to

enter any Unicode character into your WML.

Named Entity Decimal Entity Hexa Entity Character

" " " Double quote (")

& & & Ampersand (&)

' ' ' Apostrophe (')

< < < Less than (<)

> > > Greater than (>)

 Nonbreaking space

­ ­ ­ Soft hyphen

Note that all entities start with an ampersand (&) and end with a semicolon (;).

This semicolon is very important: some web pages forget this and cause problems

for browsers that want correct HTML. WAP browsers also are likely to be stricter

about errors like these.

21. WML – ENTITIES

WML

93

The following table lists all the valid WML elements. Click over the links to know

more detail of that element.

Deck & Card Elements

WML Elements Purpose

<!--> Defines a WML comment.

<wml> Defines a WML deck (WML root).

<head> Defines head information.

<meta> Defines meta information.

<card> Defines a card in a deck.

<access>
Defines information about the access control of a

deck.

<template> Defines a code template for all the cards in a deck.

WML <!--...--> Tag

The WML <!--...> tag is used to comment out a portion of WML code.

A comment starts with the four characters <!-- and ends with the three characters

--> . Everything that appears between these two markers, including tags, body

text, entities, and line breaks, is ignored.

If for some reason, you want the sequence <!-- in your body text, write it with an

entity (which you would have to do for the < anyway):

<

WML does not allow nesting of comments. This means you cannot keep comment

inside a comment. The following doesn't work:

<!-- A simple <!-- EMBEDDED COMMENT, NOT! --> comment. -->

Note that the WAP gateway removes all comments as part of its processing, so

the browser doesn't even know they exist and there is no effect on traffic due to

your comments.

22. WML – TAGS REFERENCE

WML

94

Attributes

There is no attribute related to <!--...--> tag.

Example

The following example shows the usage of this element:

<!-- This will be assumed as a comment -->

A multiline comment can be given as follows:

<!-- This is a multi-line

 comment -->

WML <wml> Tag

The WML <wml> tag is used to define a WML deck and contains cards and other

elements of the document.

The <wml> element serves a purpose much like the <html> element does for the

HTML pages.

Attributes

The <wml> element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="one" title="First Card">

WML

95

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

Ths is the second card in the deck

</p>

</card>

</wml>

WML <head> Tag

The <head> element in WML is similar to the <head> element in HTML.

It marks a place for meta-information about the document to be stored. Meta-

information is information about the document itself, rather than its content.

If present, this element must be the first thing inside the <wml> element.

Attributes

The <head> element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<head>

WML

96

 <access domain="www.tutorialspoint.com"/>

 <meta name="keyword" content="WML"/>

</head>

<wml>

<card id="one" title="First Card">

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

Ths is the second card in the deck

</p>

</card>

</wml>

WML <meta> Tag

The <meta> element places an item of arbitrary meta-information in a WML deck.

This item is structured as a property name and its value.

You can put any number of <meta> elements into the <head> element. This can

add keywords for indexing purposes, store hints about the content of the deck,

and store any other information.

Attributes

The <meta> element supports the following attributes:

Attribute Value Description

name string

Gives the name of this property. Meta-information with

this attribute is intended for server-side applications, so

it may be removed before it gets to the browser. Could

be "keywords", "author", etc.

WML

97

http-

equiv
string An alternative for the name attribute.

forua
true

false

If present and set to true, indicates that the property is

intended for the use of the browser.

content string Should specify a description of the name attribute.

scheme string

Can specify a format or structure that some properties

may need to interpret their values. This attribute is used

by a few properties.

class
class

data
Sets a class name for the element.

id
element

ID
A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<head>

 <meta name="keyword" content="WML"/>

 <meta http-equiv="Cache-control" content="no-cache"/>

</head>

<wml>

<card id="one" title="First Card">

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

WML

98

Ths is the second card in the deck

</p>

</card>

</wml>

WML <card> Tag

The <card> element encloses a WML card within a deck. In addition, text and

graphics enclosed within <p> elements, it may also contain a number of event

bindings.

Attributes

The <card> element supports the following attributes:

Attribute Value Description

title cdata

Gives a title to this card. This title is

displayed in some way by the browser

when the card is visible.

newcontext
true

false

Specifies that when this card is entered,

the browser context should be cleared.

ordered
true

false

Provides a hint to the browser about how

the card is organized. Set it to true if the

card consists of a number of separate

fields that should be dealt with in the order

they appear in the card. Set it to false if

the card contains optional fields or may be

filled in out of order.

onenterforward URL
Occurs when the user navigates into a card

using a "go" task.

onenterbackward URL
Occurs when the user navigates into a card

using a "prev" task.

ontimer URL Occurs when a "timer" expires.

xml:lang language_code Sets the language used in the element.

class cdata Sets a class name for the element.

id element_ID A unique ID for the element.

WML

99

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="one" title="First Card">

<p>

This is the first card in the deck

</p>

</card>

<card id="two" title="Second Card">

<p>

Ths is the second card in the deck

</p>

</card>

</wml>

WML<access>Tag

The <access> element provides a simple form of access control for a deck. This

allows a deck to specify that only certain other decks may link to it (these decks

are known as referring URLs).

There may be no more than one <access> element in a deck, and it must be the

first thing inside the <head> element.

Attributes

The <access> element supports the following attributes:

Attribute Value Description

domain cdata
Specifies the domain (effectively, the range of servers)

from which the referring deck must come.

WML

100

path cdata

Specifies the path within the referring URL that must

match. (The path is the part of the URL that specifies a

file or directory on the server.)

class cdata Sets a class name for the element.

id
element

ID
A unique ID for the element.

Example

The following example shows the usage of this element:

Access is limited to other decks in www.tutorialspoint.com

<head>

 <access domain="www.tutorialspoint.com"/>

</head>

Access is limited to other decks in www.tutorialspoint.com/wml

<head>

 <access domain="www.tutorialspoint.com" path="/wml"/>

</head>

WML <template> Tag

The <template> is used to apply <do> and <onevent> elements to all cards in a

deck. This element defines a template for all the cards in a deck and the code in

the <template> tag is added to each card in the deck.

You can override a <do> element of a template by defining another <do> element

with the same name attribute value in a WML card.

Attributes

The <template> element supports the following attributes:

Attribute Value Description

onenterbackward URL
Occurs when the user navigates into a card

using a "prev" task.

onenterforward URL
Occurs when the user navigates into a card

using a "go" task.

ontimer URL Occurs when the "timer" expires.

WML

101

class class data Sets a class name for the element.

id
element

ID
A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.3//EN"

"http://www.wapforum.org/DTD/wml13.dtd">

<wml>

 <template>

 <do name="main_menu" type="accept" label="Chapters">

 <go href="chapters"/>

 </do>

 <do name="menu_1" type="accept" label="Chapter 1">

 <go href="#chapter1"/>

 </do>

 <do name="menu_2" type="accept" label="Chapter 2">

 <go href="#chapter2"/>

 </do>

 <do name="menu_3" type="accept" label="Chapter 3">

 <go href="#chapter3"/>

 </do>

 <do name="menu_4" type="accept" label="Chapter 4">

 <go href="#chapter4"/>

 </do>

 </template>

 <card id="chapters" title="WML Tutorial">

 <p>

WML

102

 Select One Chapter:

 <anchor>

 <go href="#chapter1"/>

 Chapter 1: WML Overview

 </anchor>

 <anchor>

 <go href="#chapter2"/>

 Chapter 2: WML Environment

 </anchor>

 <anchor>

 <go href="#chapter3"/>

 Chapter 3: WML Syntax

 </anchor>

 <anchor>

 <go href="#chapter4"/>

 Chapter 4: WML Elements

 </anchor>

 </p>

 </card>

 <card id="chapter1" title="WML Tutorial Ch1">

 <p>

 Chapter 1: WML Introduction

 ...

 </p>

 </card>

WML

103

 <card id="chapter2" title="WML Tutorial Ch2">

 <p>

 Chapter 2: WML Environment

 ...

 </p>

 </card>

 <card id="chapter3" title="WML Tutorial Ch3">

 <p>

 Chapter 3: WML Syntax

 ...

 </p>

 </card>

 <card id="chapter4" title="WML Tutorial Ch4">

 <p>

 Chapter 4: WML Elements

 ...

 </p>

 </card>

</wml>

It will produce the following menu and now you can navigate through all the

chapters:

WML

104

Text Elements

WML Elements Purpose

 Defines a line break

<p> Defines a paragraph

<table> Defines a table

<td> Defines a table cell (table data)

<tr> Defines a table row

<pre> Defines preformatted text

WML
 Tag

The
 element defines a line break and almost all WAP browsers support a

line break tag.

Attributes

The
 element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

WML

105

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of
 element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Line Break Example">

<p align="center">

This is a
 paragraph with a line break.

</p>

</card>

</wml>

It will produce the following result:

WML

106

WML <p> Tag

The <p> element defines a paragraph of text and WAP browsers always render a

paragraph in a new line.

A <p> element is required to define any text, image, or a table in WML.

Attributes

The <p> element supports the following attributes:

Attribute Value Description

align

left

right

center

This is used to change the horizontal alignment of

a paragraph.

mode
wrap

nowrap

Sets whether a paragraph should wrap lines or

not.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of <p> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Paragraph Example">

<p align="center">

This is first paragraph

</p>

<p align="right">

This is second paragraph

WML

107

</p>

</card>

</wml>

It will produce the following result:

WML <table> Tag

The <table> element along with <tr> and <td> is used to create a table in WML.

WML does not allow the nesting of tables.

A <table> element should be put with-in <p>...</p> elements.

Attributes

The <table /> element supports the following attributes:

Attribute Value Description

columns number Sets the number of columns in the table.

align

L

C

R

To specify the horizontal text alignment of the

columns, you need to assign three letters to the

align attribute. Each letter represents the

horizontal text alignment of a column. The letter

can be L, C, or R. For example, if you want the

following settings to be applied to your table:

First table column -- Left-aligned

Second table column -- Center-aligned

Third table column -- Right-aligned

WML

108

Then you should set the value of the align attribute

to LCR.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of <table> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Tables">

<p>

<table columns="3" align="LCR">

 <tr>

 <td>Col 1</td>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <td>A</td>

 <td>B</td>

 <td>C</td>

 </tr>

 <tr>

 <td>D</td>

 <td>E</td>

WML

109

 <td>F</td>

 </tr>

</table>

</p>

</card>

</wml>

It will produce the following result:

WML <td> Tag

The <td> element encloses a single cell within a table.

It may appear only inside a <tr> element. It takes no attributes and may contain

the following: flow text; images using the element; text style changes

using the , , , <i>, <u>, <big>, and <small> elements; and

anchored text using the <a> or <anchor> elements.

An empty <td> element, or one containing only whitespace, is legal and

significant.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element

class string Sets a class name for the element.

id element ID A unique ID for the element.

WML

110

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Tables">

<p>

<table columns="3" align="LCR">

 <tr>

 <td>Col 1</td>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <td>A</td>

 <td>B</td>

 <td>C</td>

 </tr>

 <tr>

 <td>D</td>

 <td>E</td>

 <td>F</td>

 </tr>

</table>

</p>

</card>

</wml>

WML

111

It will produce the following result:

WML <tr> Tag

The <td> element defines a table row.

This element can contain only <td> elements, giving the cells within the row. It's

legal for a <tr> element to contain no <td> elements or only empty ones. This

indicates an empty row in the table.

Attributes

This element supports the following attributes:

Attribute Value Description

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

WML

112

<card title="WML Tables">

<p>

<table columns="3" align="LCR">

 <tr>

 <td>Col 1</td>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <td>A</td>

 <td>B</td>

 <td>C</td>

 </tr>

 <tr>

 <td>D</td>

 <td>E</td>

 <td>F</td>

 </tr>

</table>

</p>

</card>

</wml>

It will produce the following result:

WML

113

WML <pre> Tag

The <pre> element is used to specify preformatted text in WML. Preformatted

text is text of which the format follows the way it is typed in the WML document.

This tag preserves all the white spaces enclosed inside this tag. Make sure you are

not putting this tag inside <p>...</p>

Attributes

The <pre> element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of <pre> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

114

<wml>

<card title="Preformatted Text">

<pre>

 This is preformatted

 text and will appear

 as it it.

</pre>

</card>

</wml>

It will produce the following result:

Text Formatting Tags

WML Elements Purpose

 Defines bold text.

<big> Defines big text.

 Defines emphasized text.

<i> Defines italic text.

<small> Defines small text.

 Defines strong text.

WML

115

<u> Defines underlined text.

WML Tag

The element defines a bold text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

WML

116

</card>

</wml>

It will produce the following result:

WML <big> Tag

The <big> element defines a big text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

WML

117

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

</wml>

It will produce the following result:

WML

118

WML Tag

The element defines an emphasized text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

WML

119

</wml>

It will produce the following result:

WML <i> Tag

The <i> element defines an italic text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

120

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

</wml>

It will produce the following result:

WML <small> Tag

The <small> element defines a small text.

WML

121

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

</wml>

WML

122

It will produce the following result:

WML Tag

The element defines a strong text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

123

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

</wml>

It will produce the following result:

WML

124

WML <u> Tag

The <u> element defines an underlined text.

Attributes

This element supports the following attributes:

Attribute Value Description

xml:lang language_code Sets the language used in the element.

class string Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Text Formatting">

<p>

 bold text

 <big>big text</big>

 emphasized text

 <i>italic text</i>

 <small>small text</small>

 strong text

 <u>underlined text</u>

</p>

</card>

WML

125

</wml>

It will produce the following result:

Image Elements

WML Elements Purpose

 Defines an image.

WML Tag

The element is used to include an image in a WAP card. WAP-enabled

wireless devices only supported the Wireless Bitmap (WBMP) image format.

WBMP images can only contain two colors: black and white. The file extension of

WBMP is ".wbmp" and the MIME type of WBMP is "image/vnd.wap.wbmp".

Attributes

This element supports the following attributes:

The element supports the following attributes:

Attribute Value Description

align
top

middle
Alignment of the image.

WML

126

bottom

alt
alternative

text

Sets an alternate text to be displayed if the image

is not displayed.

height
px

%

Height of the image in pixels or percentage. If you

specify the value in pixels, the syntax is "140",

instead of "140px".

hspace
px

%

Sets white space to the left and right of the

image. If you specify the value in pixels, the

syntax is "140", instead of "140px".

localsrc cdata

Sets an alternate representation for the image. If

this attribute is set, the browser will use it instead

of the "src" attribute.

src image url A path to wbmp image.

vspace
px

%

Sets white space above and below the image. If

you specify the value in pixels, the syntax is

"140", instead of "140px".

width
px

%

Sets the width of the image. If you specify the

value in pixels, the syntax is "140", instead of

"140px".

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="WML Images">

<p>

This is Thumb image

WML

127

</p>

<p>

This is Heart image

</p>

</card>

</wml>

It will produce the following result:

Anchor Elements

WML Elements Purpose

<a> Defines an anchor.

<anchor> Defines an anchor.

WML <a>Tag

The <a>... tag pair can also be used to create an anchor link and always a

preferred way of creating links.

WML

128

You can enclose Text or image inside <a>... tags.

Attributes

This element supports the following attributes:

Attribute Value Description

href URL Defines URL of the liked page.

title cdata Defines a text identifying the link.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="A Element">

<p> Link to Next Page:

 Next Page

</p>

</card>

</wml>

It will produce the following result:

WML

129

WML <anchor> Tag

The <anchor>...</anchor> tag pair is used to create an anchor link. It is used

together with other WML elements called <go/>, <refresh> or <prev/>. These

elements are called task elements and tell WAP browsers what to do when a user

selects the anchor link.

You can enclose Text or Image along with a task tag inside <anchor>...</anchor>

tag pair.

Attributes

This element supports the following attributes:

Attribute Value Description

title cdata Defines a text identifying the link.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

WML

130

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Anchor Element">

<p>

 <anchor>

 <go href="nextpage.wml"/>

 </anchor>

</p>

<p>

 <anchor>

 <prev/>

 </anchor>

</p>

</card>

</wml>

It will produce the following result:

WML

131

Event Elements

WML Elements Purpose

<do> Defines a do event handler.

<onevent> Defines an onevent event handler.

<postfield> Defines a postfield event handler.

<ontimer> Defines an ontimer event handler.

<onenterforward> Defines an onenterforward handler.

<onenterbackward> Defines an onenterbackward handler.

<onpick> Defines an onpick event handler.

WML <do> Tag

The <do> tag can be used to activate a task when the user clicks on a word/phrase

on the screen.

Attributes

This element supports the following attributes:

Attribute Value Description

name text Sets a name for the <do> element.

label string Sets a label for the <do> element.

type

accept

prev

help

reset

options

delete

unknown

x-*

Defines the type of the <do> element.

WML

132

vnd.*

value number
Specifies the timer after which timer will be expired.

Timeouts are specified in units of a tenth of a second.

class class_data Sets a class name for the element.

id
element

ID
A unique ID for the element.

Example

The following example shows the usage of <do> element along with <go>

element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.3//EN"

"http://www.wapforum.org/DTD/wml13.dtd">

<wml>

 <template>

 <do name="main_menu" type="accept" label="Chapters">

 <go href="chapters"/>

 </do>

 <do name="menu_1" type="accept" label="Chapter 1">

 <go href="#chapter1"/>

 </do>

 <do name="menu_2" type="accept" label="Chapter 2">

 <go href="#chapter2"/>

 </do>

 <do name="menu_3" type="accept" label="Chapter 3">

 <go href="#chapter3"/>

 </do>

 <do name="menu_4" type="accept" label="Chapter 4">

 <go href="#chapter4"/>

 </do>

WML

133

 </template>

 <card id="chapters" title="WML Tutorial">

 <p>

 Select One Chapter:

 <anchor>

 <go href="#chapter1"/>

 Chapter 1: WML Overview

 </anchor>

 <anchor>

 <go href="#chapter2"/>

 Chapter 2: WML Environment

 </anchor>

 <anchor>

 <go href="#chapter3"/>

 Chapter 3: WML Syntax

 </anchor>

 <anchor>

 <go href="#chapter4"/>

 Chapter 4: WML Elements

 </anchor>

 </p>

 </card>

 <card id="chapter1" title="WML Tutorial Ch1">

 <p>

 Chapter 1: WML Introduction

WML

134

 ...

 </p>

 </card>

 <card id="chapter2" title="WML Tutorial Ch2">

 <p>

 Chapter 2: WML Environment

 ...

 </p>

 </card>

 <card id="chapter3" title="WML Tutorial Ch3">

 <p>

 Chapter 3: WML Syntax

 ...

 </p>

 </card>

 <card id="chapter4" title="WML Tutorial Ch4">

 <p>

 Chapter 4: WML Elements

 ...

 </p>

 </card>

</wml>

WML

135

It will produce the following menu and now you can navigate through all the

chapters:

WML <onevent> Tag

The <onevent>...</onevent> tags are used to create event handlers.

Attributes

This element supports the following attributes:

Attribute Value Description

type onenterbackward

onenterforward

onpick

ontimer

Defines a type of event occurred.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of <onevent> element. In this example,

whenever you try to go back from second card to first card

then onenterbackward occurs, which moves you to card number three. Copy

and paste this program and try to play with it.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

WML

136

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<onevent type="onenterbackward">

 <go href="#card3"/>

</onevent>

<card id="card1" title="Card 1">

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

</p>

</card>

<card id="card2" title="Card 2">

<p>

 <anchor>

 <prev/>

 Going backwards

 </anchor>

</p>

</card>

<card id="card3" title="Card 3">

<p>

Hello World!

</p>

</card>

</wml>

WML

137

WML <postfield> Tag

The <postfield> tag is used to post variables values to the server.

Attributes

This element supports the following attributes:

Attribute Value Description

name string Sets the name of the variable.

value string Sets the value of the variable.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

Following example shows how to submit three fields name, age, and sex to the

server.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="card1" title="WML Form">

<p>

 Name: <input name="name" size="12"/>

 Sex : <select name="sex">

 <option value="male">Male</option>

 <option value="female">Female</option>

 </select>

 Age : <input name="age" size="12" format="*N"/>

 <anchor>

 <go method="get" href="process.php">

WML

138

 <postfield name="name" value="$(name)"/>

 <postfield name="age" value="$(age)"/>

 <postfield name="sex" value="$(sex)"/>

 </go>

 Submit Data

 </anchor>

</p>

</card>

</wml>

When you download the above code on your WAP device, it will provide you option

to enter three fields name, age, and sex and one link Submit Data. You will enter

three fields and then finally you will select Submit Data link to send entered data

to the server.

WML <ontimer> Tag

The ontimer event is used to trigger an event after a given time period. Let's say,

you want to display a message after 5 seconds of loading a card, then you can

use this event to do so.

Here is the syntax to define an event handler for ontimer event:

<onevent type="ontimer">

 A task to be performed.

</onevent>

<timer value="50"/>

Example

The following example shows the usage of ontimer event along with <onevent>

element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

WML

139

<card id="splash" title="splash">

 <onevent type="ontimer">

 <go href="#welcome"/>

 </onevent>

 <timer value="50"/>

<p>

 Enter

</p>

</card>

<card id="welcome" title="Welcome">

<p>

Welcome to the main screen.

</p>

</card>

</wml>

When you load this program, it shows you the following screen:

If you do not select given Enter option, then after 5 seconds you will be directed

to Welcome page and following screen will be displayed automatically.

WML

140

WML <onenterforward> Tag

The onenterforward event is triggered when a user goes to a card in the forward

direction. For example, if you go to a card by entering the URL directly or by

following an anchor link of which the action is <go>, the onenterforward event

will be triggered and the WML code associated with the event will be executed.

The onenterforward event will be useful to you if you want to do something

before a card is displayed. For example, you need the onenterforward event if you

want to assign a value to a variable before a card is displayed.

Here is the syntax to define an event handler for onenterforward event:

<onevent type="onenterforward">

 A task to be performed.

</onevent>

Example

Following is the example showing how onenterbackward event occurs whenever

you try to go on second card from the first card and defined event handler takes

you to card number three instead of card number 2. Copy and paste this program

and try to play with it to understand onenterforward event type.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

WML

141

<wml>

<card id="card1" title="Card 1">

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

</p>

</card>

<card id="card2" title="Card 2">

<onevent type="onenterforward">

 <go href="#card3"/>

</onevent>

<p>

 This is card 2

</p>

</card>

<card id="card3" title="Card 3">

<p>

Hello World!

</p>

</card>

</wml>

When you load this program, you will get the following screen:

WML

142

Now, press option Go to card 2 to go to the second card, because of

this onenterforward, event will occur and it will take on card number 3 instead

of card number 2 and you will see the following screen:

WML <onenterbackward> Tag

This event occurs when the user hits a card by normal backward navigational

means. That is, user presses the Back key on a later card and arrives back at this

card in the history stack.

Here is the syntax to define an event handler for onenterbackward event:

<onevent type="onenterbackward">

 A task to be performed.

</onevent>

WML

143

Example

Following is the example showing how onenterbackward event occurs whenever

you try to go back from second card to first card and defined event handler takes

you to card number three instead of card number 1. Copy and paste this program

and try to play with it to understand onenterbackward event type.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="card1" title="Card 1">

<onevent type="onenterbackward">

 <go href="#card3"/>

</onevent>

<p>

 <anchor>

 <go href="#card2"/>

 Go to card 2

 </anchor>

</p>

</card>

<card id="card2" title="Card 2">

<p>

 <anchor>

 <prev/>

 Going backwards

 </anchor>

</p>

</card>

<card id="card3" title="Card 3">

<p>

WML

144

Hello World!

</p>

</card>

</wml>

When you load this program you, will get the following screen:

Now, press option Go to card 2 to go to the second card this will take you to the

following screen:

Now, you are on second page. Now, when you try to go back on card number

onenterbackward event is executed and it takes you on card number 3 instead

of card number 2 and you see the following screen.

WML

145

WML <onpick> Tag

The onpick attribute is a great shortcut if you are using a select menu. Instead of

writing a lot of codes that allow the user to go to another card if an option is

selected, you can simply place the destination into the onpick attribute. Here is a

code fragment without the onpick attribute:

Example

The following example shows the usage of onpick attribute along with <option>

element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="tutorials" title="Main Menu">

<p>

 Select a tutorial :

 <select title="tutorials" name="selection_list">

 <option onpick="#xhtml">XHTML Tutorial</option>

 <option onpick="#wap">WAP Tutorial</option>

 </select>

</p>

WML

146

</card>

<card id="xhtml" title="XHTML Tutorial">

<p>

Go through our XHTML tutorial

</p>

</card>

<card id="wap" title="WAP Tutorial">

<p>

Go through our WAP tutorial

</p>

</card>

</wml>

When you load this program, it shows you the following screen:

Now, highlight the dropdown box and select it. It will give you two options as

follows:

When you load this program, it shows you the following screen:

WML

147

Now, assume you select WAP Tutorial from the list, then it will display the

following screen:

Task Elements

WML Elements Purpose

<go> Represents the action of switching to a new card.

<noop> Says that nothing should be done.

<prev>
Represents the action of going back to the previous

card.

<refresh> Refreshes some specified card variables.

WML

148

WML <go> Tag

The <go/> element represents a <go> task represents the action of going to a

new card.

Attributes

This element supports the following attributes:

Attribute Value Description

href URL
Gives the URL of the new card. Relative URLs are

resolved relative to the current card.

method
get

post

Specifies the method that should be used to fetch

the deck. This must be one of the values get or

post, corresponding to the GET and POST methods

of HTTP.

When using method="get", the data is sent as a

request with? Data appended to the url. The

method has a disadvantage that it can be used only

for a limited amount of data, and if you send

sensitive information it will be displayed on the

screen and saved in the web server's logs. So do

not use this method if you are sending password

etc.

With method="post", the data is sent as a request

with the data sent in the body of the request. This

method has no limit, and sensitive information is

not visible in the URL.

sendreferer
true

false

If set to true, the browser sends the URL of the

current deck along with the request. This URL is

sent as a relative URL if possible. The purpose of

this is to allow servers to perform simple access

control on decks, based on which decks are linking

to them. For example, using HTTP, this attribute is

sent in the HTTP Referer header.

accept-

charset
charset_list

Specifies a comma- or space-separated list of

character sets that can encode data sent to the

server in a POST request. The default value is

"unknown".

class class data Sets a class name for the element.

id element ID A unique ID for the element.

WML

149

Example

The following example shows the usage of <go> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Chapter 2 : <go href="chapter2.wml"/>

 </anchor>

</p>

</card>

</wml>

Another example showing how to upload data using Get Method:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Using Get Method

 <go href="chapter2.wml?x=17&y=42" method="get"/>

 </anchor>

</p>

</card>

WML

150

</wml>

Another example showing how to upload data using <setvar> element.

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="GO Element">

<p>

 <anchor>

 Using setvar:

 <go href="chapter2.wml">

 <setvar name="x" value="17"/>

 <setvar name="y" value="42"/>

 </go>

 </anchor>

</p>

</card>

</wml>

Another example showing how to upload data using <postfiled> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

WML

151

<card title="GO Element">

<p>

 <anchor>

 Using setvar:

 <go href="chapter2.wml" method="get">

 <postfield name="x" value="17"/>

 <postfield name="y" value="42"/>

 </go>

 </anchor>

</p>

</card>

</wml>

WML <noop> Tag

The purpose of the <noop> task is to do nothing (no operation).

The only real use for this task is in connection with the templates.

Attributes

This element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Noop Element">

WML

152

<p>

 <do type="prev" label="Back">

 <noop/>

 </do>

</p>

</card>

</wml>

WML <prev> Tag

The <prev> task represents the action of returning to the previously visited card

on the history stack. When this action is performed, the top entry is removed from

the history stack, and that card is displayed again, after any <setvar> variable

assignments in the <prev> task have taken effect.

Attributes

This element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of <prev> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Prev Element">

<p>

 <anchor>

 Previous Page :<prev/>

WML

153

 </anchor>

</p>

</card>

</wml>

One situation where it can be useful to include variables in a <prev> task is a

login page, which prompts for a username and password. In some situations, you

may want to clear out the password field when returning to the login card, forcing

the user to reenter it. This can be done with a construct such as:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Prev Element">

<p>

 <anchor>

 <prev>

 <setvar name="password" value=""/>

 </prev>

 </anchor>

</p>

</card>

</wml>

WML <refresh> Tag

The <refresh> task is the simplest task that actually does something. Its effect is

simply to perform the variable assignments specified by its <setvar> elements,

then redisplay the current card with the new values. The <go> and <prev> tasks

perform the same action just before displaying the new card.

The <refresh> task is more often used to perform some sort of "reset" action on

the card.

WML

154

Attributes

This element supports the following attributes:

Attribute Value Description

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Referesh Element">

<p>

 <anchor>

 Refresh this page:

 <go href="test.wml"/>

 <refresh>

 <setvar name="x" value="100"/>

 </refresh>

 </anchor>

</p>

</card>

</wml>

Input Elements

WML Elements Purpose

<input> Defines an input field.

WML

155

<select> Defines a select group.

<option> Defines an option in a selectable list.

<fieldset> Defines a set of input fields.

<optgroup> Defines an option group in a selectable list.

WML <input> Tag

The <input/> element is used to create input fields and input fields are used to

obtain alphanumeric data from the users.

Attributes

This element supports the following attributes:

Attribute Value Description

name text
The name of the variable that is set with the

result of the user's input.

maxlength number
Sets the maximum number of characters the user

can enter in the field.

emptyok
true

false

Sets whether the user can leave the input field

blank or not. Default is "false."

format

A

a

N

X

x

M

m

*f

nf

Sets the data format for the input field. Default is

"*M".

A = uppercase alphabetic or punctuation

characters.

a = lowercase alphabetic or punctuation

characters.

N = numeric characters.

X = uppercase characters.

x = lowercase characters.

M = all characters.

m = all characters.

*f = Any number of characters. Replace the f with

one of the letters above to specify what

characters the user can enter.

nf = Replace the n with a number from 1 to 9 to

specify the number of characters the user can

enter. Replace the f with one of the letters above

to specify what characters the user can enter.

size number Sets the width of the input field.

WML

156

tabindex number Sets the tabbing position for the select element.

title text Sets a title for the list.

type
text

password

Indicates the type of the input field. The default

value is "text". Password field is used to take

password for authentication purpose.

value text
Sets the default value of the variable in the

"name" attribute.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Input Fields">

<p> Enter Following Information:

 Name: <input name="name" size="12"/>

 Age : <input name="age" size="12" format="*N"/>

 Sex : <input name="sex" size="12"/>

</p>

</card>

</wml>

WML

157

It will produce the following screen to enter the required information:

WML <select> Tag

The <select>...</select> WML elements are used to define a selection list and the

<option>...</option> tags are used to define an item in a selection list. Items are

presented as radio buttons in some WAP browsers. The <option>...</option> tag

pair should be enclosed within the <select>...</select> tags.

Attributes

This element supports the following attributes:

Attribute Value Description

iname text
Names the variable that is set with the index

result of the selection.

ivalue text Sets the pre-selected option element.

multiple
true

false

Sets whether multiple items can be selected.

Default is "false."

name text
Names the variable that is set with the result of

the selection.

tabindex number Sets the tabbing position for the select element.

WML

158

title text Sets a title for the list.

value text
Sets the default value of the variable in the

"name" attribute.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p> Select a Tutorial :

 <select>

 <option value="htm">HTML Tutorial</option>

 <option value="xml">XML Tutorial</option>

 <option value="wap">WAP Tutorial</option>

 </select>

</p>

</card>

</wml>

When you will load this program, it will show you the following screen:

WML

159

Once you highlight and enter on the options, it will display the following screen:

You want to provide option to select multiple options, then set multiple attribute

to true as follows:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

WML

160

<p> Select a Tutorial :

 <select multiple="true">

 <option value="htm">HTML Tutorial</option>

 <option value="xml">XML Tutorial</option>

 <option value="wap">WAP Tutorial</option>

 </select>

</p>

</card>

</wml>

This will give you a screen to select multiple options as follows:

WML <option> Tag

The <option>...</option> tags are used to define an item in a selection list. Items

are presented as radio buttons in some WAP browsers. The <option>...</option>

tag pair should be enclosed within the <select>...</select> tags.

Attributes

This element supports the following attributes:

Attribute Value Description

WML

161

onpick url
Sets what is going to happen when a user selects

an item.

title text Sets a title for the option.

value text
Sets the default value of the variable in the

"name" attribute.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p> Select a Tutorial :

 <select>

 <option value="htm">HTML Tutorial</option>

 <option value="xml">XML Tutorial</option>

 <option value="wap">WAP Tutorial</option>

 </select>

</p>

</card>

</wml>

When you will load this program, it will show you the following screen:

WML

162

Once you highlight and enter on the options, it will display the following screen:

WML <fieldset> Tag

The <fieldset/> element is used to group various input fields or selectable lists.

Attributes

This element supports the following attributes:

Attribute Value Description

title text Sets a title for the list.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element.

WML

163

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Grouped Fields">

<p>

<fieldset title="Personal Info">

 Name: <input name="name" size="12"/>

 Age : <input name="age" size="12" format="*N"/>

 Sex : <input name="sex" size="12"/>

</fieldset>

</p>

</card>

</wml>

It will produce the following screen to enter the required information. The result

may differ from browser to browser.

WML

164

WML <optgroup> Tag

The <optgroup/> element is used to group various options together inside a

selectable list.

Attributes

This element supports the following attributes:

Attribute Value Description

title text Sets a title for the list.

xml:lang language_code Sets the language used in the element.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following example shows the usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card title="Selectable List">

<p>

 <select>

 <optgroup title="India">

 <option value="delhi">Delhi</option>

 <option value="mumbai">Mumbai</option>

 <option value="hyderabad">Hyderabad</option>

 </optgroup>

 <optgroup title="USA">

 <option value="ohio">Ohio</option>

 <option value="maryland">Maryland</option>

 <option value="washington">Washingtone</option>

WML

165

 </optgroup>

 </select>

</p>

</card>

</wml>

When a user loads the above code, it will produce two options to be selected:

When a user selects any of the options, it will show the final options to be selected.

If a user selects India, then it will show you the following options:

Variable Elements

WML Elements Purpose

WML

166

<setvar> Defines and sets a variable.

<timer> Defines a timer.

WML <setvar> Tag

The <setvar> element is used as a result of the user executing some task. The

>setvar> element can be used to set a variable's state within the following

elements: <go>, <prev>, and <refresh>.

Attributes

This element supports the following attributes:

Attribute Value Description

name string Sets the name of the variable.

value string Sets the value of the variable.

class class data Sets a class name for the element.

id element ID A unique ID for the element.

Example

The following element would create a variable named ‘a’ with a value of 1000:

<setvar name="a" value="1000"/>

Following is another example showing usage of this element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card>

<p>

 <anchor>

 Go to next chapter

 <go href="#chapter2">

 <setvar name="x" value="30"/>

 </go>

WML

167

 </anchor>

</p>

</card>

</wml>

WML <timer> Tag

A timer is declared inside a WML card with the <timer> element. It must follow

the <onevent> elements if they are present. (If there are no <onevent>

elements, the <timer> must be the first element inside the <card>.) No more

than one <timer> may be present in a card.

Attributes

This element supports the following attributes:

Attribute Value Description

name text Sets a name for the element.

value number
Specifies the timer after which timer will be expired.

Timeouts are specified in units of a tenth of a second.

class class_data Sets a class name for the element.

id
element

ID
A unique ID for the element.

Example

The following example shows the usage of <timer> element:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://www.wapforum.org/DTD/wml12.dtd">

<wml>

<card id="splash" title="splash">

 <onevent type="ontimer">

 <go href="#welcome"/>

WML

168

 </onevent>

 <timer value="50"/>

<p>

 Enter

</p>

</card>

<card id="welcome" title="Welcome">

<p>

Welcome to the main screen.

</p>

</card>

</wml>

When you load this program, it will display the following screen:

If you do not select given Enter option, then after 5 seconds you will be directed

to the Welcome page and the following screen will be displayed automatically:

WML

169

WML

170

Instead of installing an entire WAP SDK, you can install a WML emulator. An

emulator simply lets you view the contents of your WML files as they would be

seen on the screen of a WAP-enabled device.

While the emulators do a great job, they are not perfect. Try a few different ones,

and you will quickly decide, which you like the most. When the time will come to

develop a real (commercial) WAP site, you need to do a lot more testing, first with

other SDKs/emulators and then with all the WAP-enabled devices that you plan to

support.

The following lists some of the WAP emulators that are freely available:

 Klondike WAP Browser: This is produced by Apache Software. Klondike

looks a lot like a Web browser and is therefore very easy to use for

beginners. You can access local WML files easily. It also supports drag-and

drop, making local file use very easy.

 Yospace: This is produced by Yospace. WAP developers can use the

desktop edition of the emulator to preview WAP applications from their

desktop, safe with the knowledge that the emulator provides a reasonably

faithful reproduction of the actual handset products.

 Ericsson R380 Emulator: This is produced by Ericsson. The R380 WAP

emulator is intended to be used to test WML applications developed for the

WAP browser in the Ericsson R380. The emulator contains the WAP browser

and WAP settings functionality that can be found in the R380.

 WinWAP: This is produced by Slob-Trot Software. WinWAP is a WML

browser that works on any computer with 32-bit Windows installed. You can

browse WML files locally from your hard drive or the Internet with HTTP (as

with your normal Web browser).

 Nokia WAP simulator: This is produced by Nokia and fully loaded with

almost all functionalities. Try this one.

23. WML – WAP EMULATORS

WML

171

Validate WML Content

Copy and paste WML content in the following box and then click Validate WML to

see the result at the bottom of this page:

<?xml version="1.0"?>

<!DOCTYPE w ml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

"http://w w w .w apforum.org/DTD/w ml12.dtd">

<w ml>

<card id="one" title="First Card">

<p>

This is the f irst card in the deck

</p>

</card>

</w ml>

Validate WML

Validate WML File

Type your WML page URL and then click Validate WML to see the result at the

bottom of this page:

File Name:

http://w w w .tutorialspoint.com/w ml/test.w ml

Validate WML

24. WML – VALIDATOR

